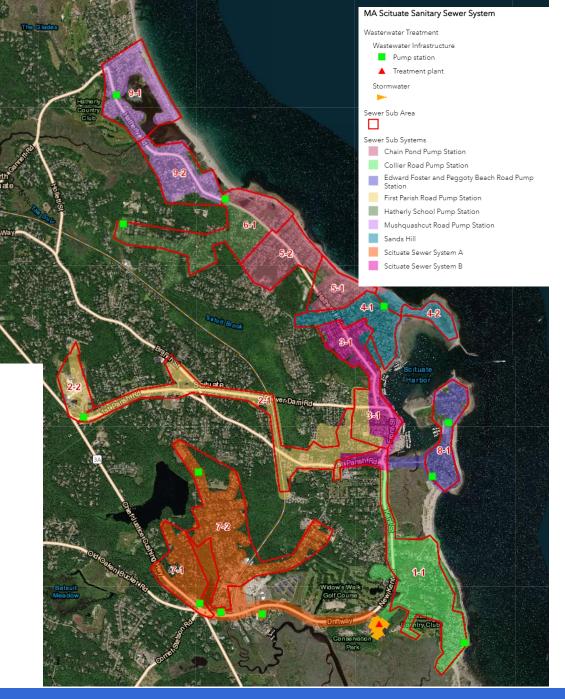
GZA natural hazard risk management, resilience and climate adaptation

Scituate Wastewater Collection System Resilience Feasibility Study – Project Update Meeting

May 31, 2019


GZA GeoEnvironmental, Inc. Known for excellence. Built on trust.

Scituate Sewer Collection and Treatment System

- +/-32 miles of sanitary sewer
- +/- 1071 sanitary manholes
- 9 pump stations/collection areas
- 14 drainage subareas
- 1 treatment plant

Scituate Wastewater Treatment Plant (WWTP) – individual SSCs

- Plant constructed: 1965
- Plant upgraded: 1984, 2000
- Serves about 7,500 people (+/- 20% population)
- Permitted daily flow capacity: 1.6 mgd
- Average daily flow: 1.31 mgd
- Peak hourly flow capacity: 4.34 mgd (3.6 mgd actual)
- Peak daily flow capacity 3.33 mgd
- Discharges to Herring River/North River Estuary

GZA Natural Hazard Risk Management, Resilience and Climate Adaptation

Why Perform Study

- ✓ Critical Lifeline System part of Town Resilience Planning
- \checkmark System is vulnerable to coastal flooding
- ✓ Vulnerability will increase in the future due to sea level rise/climate change
- ✓ System upgrades are on-going need to consider flood vulnerability
- ✓ System expansion needs to consider flood vulnerability
- ✓ Near and Long term planning understand system resilience and potential financial liability
- ✓ Benefit/Cost of flood mitigation system improvements
- \checkmark Set priorities
- ✓ Position Town for outside funding (e.g., FEMA grants)

Study Objectives

System Vulnerability Assessment:

- Characterize the flood hazard (flood elevations, water depths, duration and floodrelated loads)
- Assess the wastewater treatment system flood vulnerability to different probability flood events
- ✓ Estimate flood-related losses

Flood Mitigation/Resilience Planning:

- ✓ Identify flood risk mitigation strategies and alternatives
- ✓ Perform benefit/cost analyses
- ✓ Recommend a flood risk mitigation strategy and measures

Risks

- Direct damage due to: 1) flood inundation; b) corrosion; c) mold; and d) environmental flood loads (hydrostatic, hydrodynamic and wave loads).
- **2. Loss of service** (operational disruption) due to temporary or permanent *direct damage*.
- **3. Loss of service** (operational disruption) due to excessive flow (exceeding system capacity, causing internal flooding and/or managed system shutdown to avoid damage).

4. Indirect Effects:

- Increased costs (user, capital, operating, insurance)
- Limitations to system expansion
- Environmental Impacts
- Licensing and permitting
- Municipal Bond rating

Characterize Risk: Compare to Industry Standards and Regulations

1. TR-16 Guides for the Design of Wastewater Treatment Works:

- New Facility Design:
 - Piping Inflow and Infiltration (I/I): piping protected from I/I during wet weather conditions within 100-year floodplain
 - Pump Stations and Treatment Plant:
 - uninterrupted service during 100-year recurrence interval flood
 - first floors, tank walls and structural openings should be protected against damage to the 100year recurrence interval flood elevation
 - critical equipment should be protected against damage up to a water elevation that is 3 feet above the 100-year flood elevation (100-year recurrence interval flood level + 3 feet)
 - non-critical equipment should be protected against damage up to a water surface elevation that is 2 feet above the 100-year flood elevation
 - SCADA system components and instrumentation used to monitor and control facility
 operation should be protected from flood conditions to the maximum extent practical
 - furnish the backup power supply for critical equipment: run under full load or peak flow for at least 48 hours, or under normal operating conditions for at least 96 hours

Characterize Risk: Compare to Industry Standards and Regulations

1. TR-16 Guides for the Design of Wastewater Treatment Works:

- New Facility Design:
 - Hydraulic Capacity:
 - allow for peak hourly flows, including associated sidestream flows, to be passed through the plant with the largest of longest flow path of each unit process removed from service and with the receiving water at the 100-year recurrence interval flood elevation (including considerations of climate change)
- Existing Facility Flood Mitigation:
 - Develop in consideration of risk and benefit/cost. Existing pump stations and treatment facilities that are planned for upgrade or expansion should be improved to the maximum extent possible to meet the flood protection criteria for new facilities

Characterize Risk: Compare to Industry Standards and Regulations

2. Massachusetts Building Code:

- New Facility Design:
 - Flood Class 3 Structures
 - FEMA Coastal A Zones and Coastal High Hazard Areas:
 - The minimum elevation of the bottom of the lowest supporting horizontal member of the lowest floor, relative to the FEMA Base Flood Elevation (BFE) or Design Flood Elevation (DFE) shall be the BFE plus 2 feet or the DFE, whichever is higher.
 - FEMA Flood Areas not identified as Coastal A Zones and Coastal High Hazard Areas:
 - The minimum elevation of the top of the lowest floor, relative to the FEMA Base Flood Elevation (BFE) or Design Flood Elevation (DFE) shall be the BFE plus 1 foot or the DFE, whichever is higher.

Characterize Risks: Risk Assessment

1. Probability – Likelihood and frequency of occurrence

2. Disruption of Service:

- Duration
- % system impacted

3. Damage/Financial Loss:

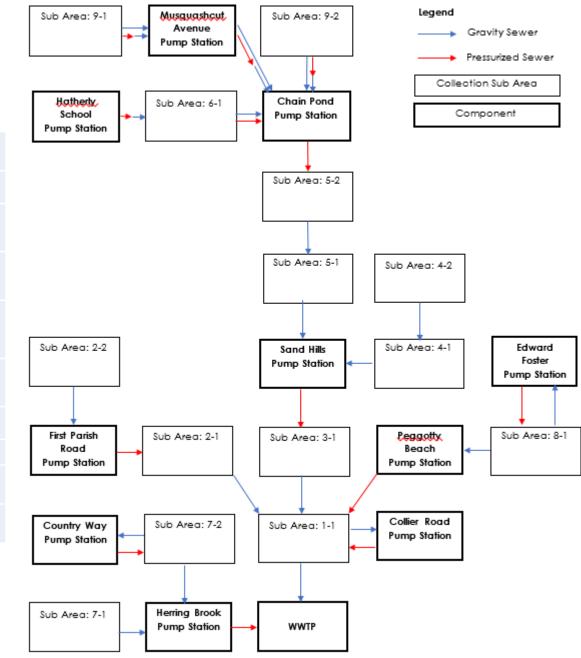
- Average Annualized Loss (AAL)
- Service Life Loss
- Effects on:
 - facility operating budget
 - Town general budget
 - Property owner costs
- 4. Environmental Impacts

Asset Inventory: Systems, Structures and Components

> Flood Hazard Characterization

Flood Vulnerability Assessment

Risk-Based Framework:

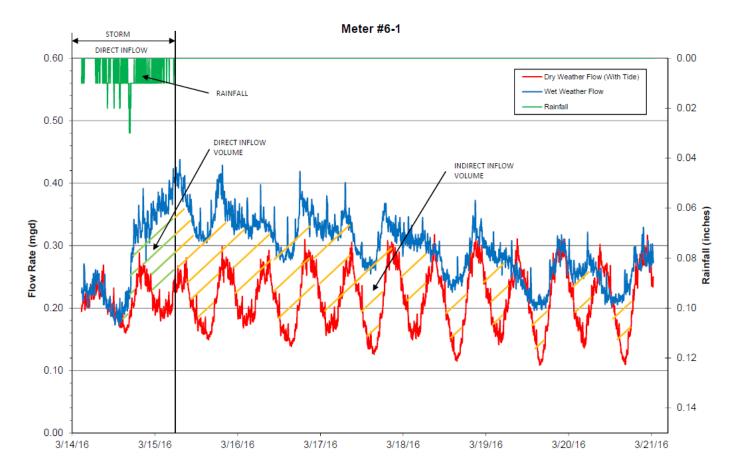

- Flood Frequency
- System Response

Analysis and Feasibility Planning:

- Flood Mitigation Strategy
- Flood Mitigation Measures Alternatives
- Benefit/Cost Analyses
- Recommendations
- Implementation

Consistent with: EPA Flood Resilience: Basic Guide for Water and Wastewater Utilities

System Analysis


						_		
Name	Area (sqft)	Acres	Parcels	Buildings	Struct	Force Mains	Collector	Stub
Chain Pond Pump		Acres	i alceis	Donanigs	511001	Mains	Conceror	51015
Station	9,620,707	220.86	737	657	161	2,705	34,229	0
First Parish Road Pump Station	12,187,516	279.79	355	371	129	3,435	27,423	164
Edward Foster and Peggoty Beach Road								
Pump Station	4,219,770	96.87	170	159	68	3,913	10,016	0
Scituate Sewer System A (Country Way and Herring Brook)	16,583,837	380.71	361	399	201	12,612	34,205	27
	10,000,007	000.71	001	0//	201	12,012	04,200	27
Collier Road Pump Station	10,469,346	240.34	337	356	151	1,064	151	47
Scituate Sewer System B	5,571,309	127.90	312	274	83	206	17,057	11
Sands Hill	6,684,319	153.45	549	495	116	873	21,524	0
Mushquashcut Road Pump Station	8,297,452	190.48	348	334	99	11,204	15,943	53
Hatherly School Pump Station	5,815,602	133.51	250	258	63	5,079	12,436	0

Findings: System Vulnerability

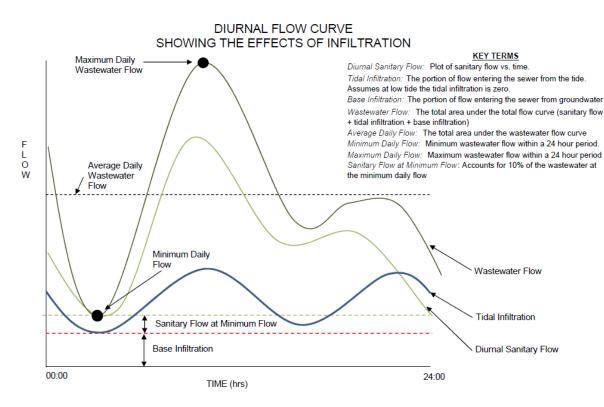
- 1. Inflow/Infiltration (I/I): piping protected from I/I during wet weather conditions within 100-year floodplain:
 - 8 drainage subareas are partially within FEMA 100-year floodplain
 - CDM Smith completed I/I study during 2016
 - o I/I due to:
 - Base (groundwater) infiltration
 - Tidal (groundwater) infiltration
 - Inflow (connected sources such as roof leaders, catch basins, sumps, drains)
 - I/I increases during wet weather (precipitation) events
 - I/I also increases during coastal storm events (flood inundation and increased tidal effects)

Inflow Analysis

Inflow		Volume Event	Volume Event	Volume Event	Inch-	Inflow	Cumulative Inflow	Cumulative Inflow
Subarea	Sub	Net Inflow	Direct Net Inflow	Indirect Net Inflow	Miles	Severity	Volume Event	Volume Event
Rank	Area	(gal)	(gal)	(gal)	(in-mi)	(g/in-mi)	(gal)	(%)
1	4-2	185,290	38,985	146,305	7.56	24,516	185,290	9%
2	6-1	332,670	43,162	289,508	32.10	10,364	517,960	25%
3	5-1	210,670	6,648	204,022	21.28	9,898	728,629	35%
4	4-1	201,348	5,113	196,236	23.01	8,751	929,978	45%
5	5-2	258,964	30,618	228,346	31.64	8,184	1,188,942	57%
6	1-1	391,158	77,789	313,369	77.25	5,064	1,580,100	76%
7	7-2	139,867	26,672	113,196	30.59	4,572	1,719,967	83%
8	2-1	214,212	36,356	177,856	47.74	4,487	1,934,179	93%
9	3-1	102,209	85,342	16,867	49.54	2,063	2,036,388	98%
10	7-1	23,948	4,795	19,152	14.09	1,700	2,060,335	99%
11	2-2	10,412	5,063	5,348	7.60	1,370	2,070,747	99%
12	8-1	10,923	5,871	5,052	14.98	729	2,081,670	100%
System	Total	2,081,670	366,413	1,715,257				

7 drainage sub areas (65% of total sewer piping) contribute 83% of total inflow:

82.40%


• 4-2; 6-1; 5-1; 4-1; 5-2; 1-1; 7-2

17.60%

 Majority of inflow is indirect (82% vs 18% direct)

Ref. CDM Smith

Infiltration Analysis

5 drainage sub areas have infiltration greater than 4,000 gpd per inch pipe diameter per mile

 2-1; 4-1; 4-2; 5-1; 6-1 Bold indicates most susceptible to tidal effects

Infiltration Subarea Rank	Subarea	Length (LF)	Inch- Miles (in-mi)	Gross Infiltration (gpd)	Net Infiltration (gpd)	Infiltration Severity (gpd/in-mi)
1	5-1	9,223	21.28	423,904	203,279	9,551
2	4-2	4,724	7.56	49,439	49,439	6,541
3	6-1	21,068	32.10	173,964	173,964	5,420
4	4-1	14,735	23.01	164,085	114,647	4,983
5	2-1	19,424	47.74	207,443	199,652	4,182
6	3-1	18,930	49.54	669,981	81,991	1,655
7	5-2	15,999	31.64	220,625	46,662	1,475
8	7-1	9,298	14.09	19,039	19,039	1,351
9	1-1	29,971	77.25	959,768	81,977	1,061
10	7-2	20,190	30.59	31,368	31,368	1,025
11	2-2	5,015	7.60	7,791	7,791	1,025
12	8-1	9,889	14.98	368	368	25

SYSTEM TOTAL = 1,010,174 gpd

Average

Infiltration Subarea Rank	Subarea	Length (LF)	Inch- Miles (in-mi)	Gross Infiltration (gpd)	Net Infiltration (gpd)	Infiltration Severity (gpd/in-mi)
1	5-1	9223	21.3	503,608	228,499	10,736
2	4-1	10852	20.4	206,722	171,587	7,457
3	6-1	21068	32.1	218,310	218,310	6,801
4	4-2	10072	15.7	35,135	35,135	4,649
5	2-1	19424	47.7	209,030	206,603	4,328
6	5-2	15,999	31.6	275,108	56,798	1,795
7	7-1	9,298	14.1	16,001	16,001	1,136
8	7-2	20,190	30.6	34,689	34,689	1,134
9	3-1	17,465	44.0	745,232	34,902	704
10	2-2	5,015	7.6	2,426	2,426	319
11	1-1	29,971	77.2	978,152	23,360	302
12	8-1	9,889	15.0	531	531	35

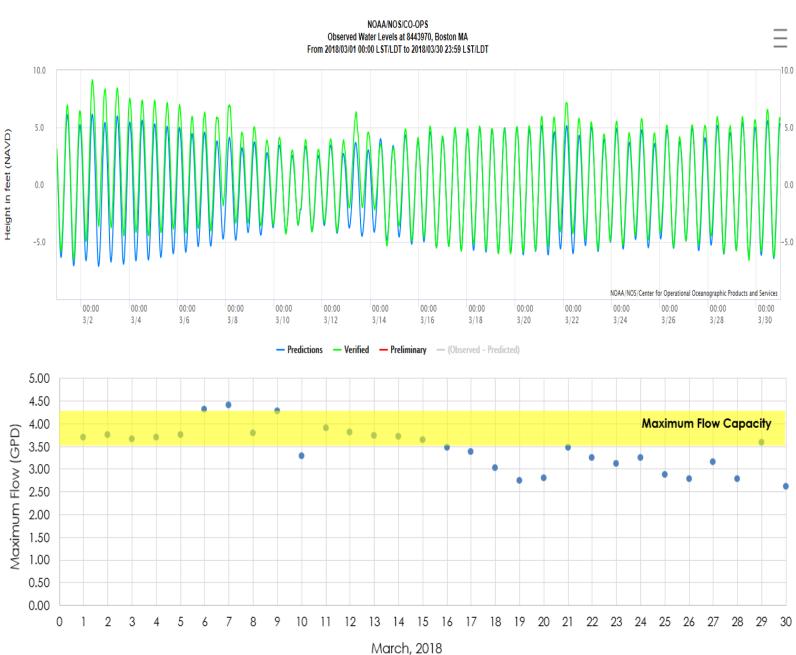
SYSTEM TOTAL = 1,028,841 gpd

Ref. CDM Smith

Findings: System Vulnerability

1. Inflow/Infiltration (I/I) Effects/Implications:

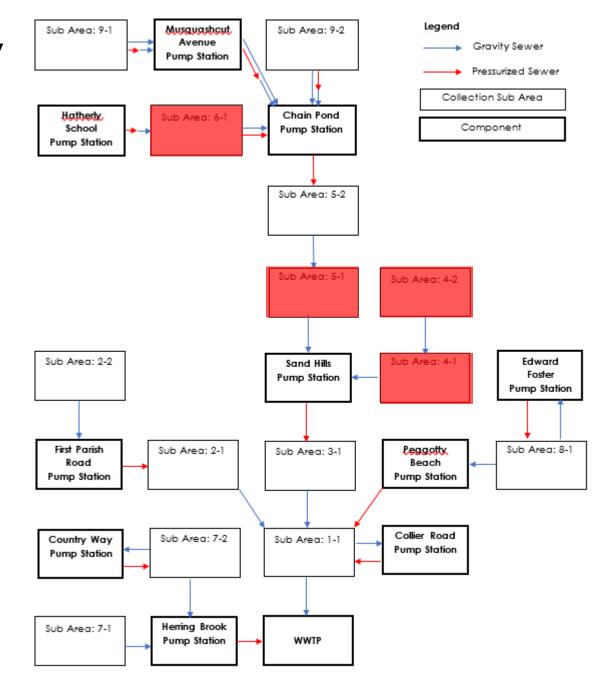
CDM Smith study concluded:


- System I/I concentrated in certain drainage sub-areas
- I/I consists mostly of groundwater/tidal infiltration and indirect inflow (sumps, foundation drains)
- High priority mitigation areas include: 4-1,4-2, 5-1 and 6-1 (Bold indicates previously repaired)
- 1. I/I contributes to increased flows and can exceed pumping and collection system capacity
- 2. System-wide I/I can result in flows during storm events that exceed plant treatment capacity
- 3. Effects will increase during coastal flood events and over time due to sea level rise
- Can result in: disruption of service; pump damage; system surcharge; internal (wastewater) flooding at pump stations and treatment plant; external (wastewater) flooding; unplanned environmental release; and financial loss

Findings: System Vulnerability

 Inflow/Infiltration (I/I)Coastal Storm Effects:

Sand Hills Pump Station March 1-3, 2018


Findings: System Vulnerability

1. Inflow/Infiltration (I/I)Coastal Storm Effects:

Pump Station	Dry Average (GPD)	Wet (GPD)	Average	Design Capacity (GPM)	March 2108 Peak (GPD)
Musquashcut	10,000	13,000		600	55,000 ¹
Peggotty Beach	10,000	25,000		280	108,000
Herring Brook	35,000	70,000		1,000	120,000 ²
Country Way	6,500	15,000		260	14,000
Chain Pond	200,000	250,000		1,200	525,000
Sand Hills	600,000	1,000,000	D	1,600	2,250,000

Preliminary Conclusion:

 Collection system and treatment capacity probably is reached during a coastal flood event with stillwater elevation on the order of 9 feet NAVD88 (+/- 50 year recurrence interval in 2019).

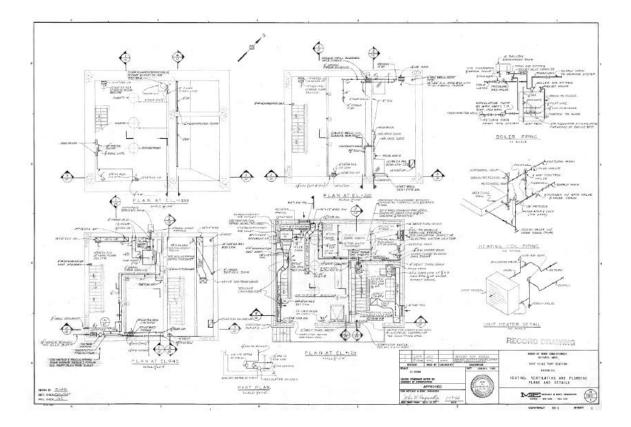
Findings: System Vulnerability

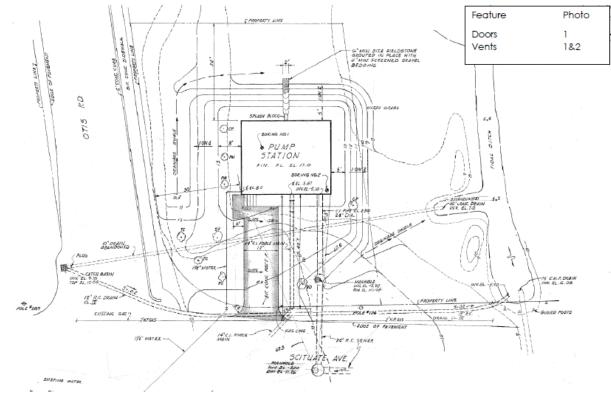
2. Pump Station Vulnerability:

- Pump stations located within FEMA flood hazard areas:
 - Musquashicut (GS=7 ft NAVD88; AE 13 ft NAVD88)
 - Chain Pond (GS=11 to 12 ft NAVD88; AE 14 ft NAVD88)
 - Sands Hill (GS=5 to 7 ft NAVD88; AE 15 ft NAVD88)
 - Edward Foster (GS=9 to 10 ft NAVD88; AE 16 ft NAVD88)
 - Peggotty Beach (GS=9 to 10 ft NAVD88; VE 17 ft NAVD88)
 - Herring Brook (GS=9 to 10 ft NAVD88; AE 16 ft NAVD88)
 - Collier Road (GS=15.5 to 16 ft NAVD88; outside but close to FEMA AE, El. 16 ft NAVD88)

Topographic and Site Setting

Sand Hills Pump Station: Latitude: 42°12'29.2"N Longitude: 70°43'33.0"W


Facility Location and Ground Surface Elevation:



Site Location

Elevation, feet NAVD88

Facility Plans

Source: Sheet 1 - Sand Hill Pump Station Civil Site Plan

Site Reconnaissance

Water Entry Point Inventory

Sand Hills Pump Station: Water Entry Elevation Table

Water Entry Points	ID	Description Critical Elevation	Elevation (feet, NGVD29)	Elevation (feet, NAVD88)
Windows:		None Observed		
Doors (Personnel and Public):				
Personnel entryway	1	Door Threshold elev.	12.2±	11.4±
Personnel entryway	2	Door Threshold elev.	12.2±	11.4±
Vents:				
18" x 88" Vent	Vent 1	Bottom of Vent	12.2±	11.4±
28'' x 40'' Vent	Vent 2	Bottom of Vent	16.7±	15.9±
28'' x 40'' Vent	Vent 3	Bottom of Vent	16.7±	15.9±
28'' x 88'' Vent	Vent 4	Bottom of Vent	12.2±	11.4±
28'' x 88'' Vent	Vent 5	Bottom of Vent	12.2±	11.4±
8" x 8" Vent	Vent 6	Bottom of Vent	12.4±	11.6±
8" x 8" Vent	Vent 7	Bottom of Vent	14.0±	13.2±
Other				
Outside Electric Meter Panel		Lowest Elevation	13.9±	13.1±
Pipe Wall Penetrations to daylight or unsealed vaults/manholes		None Observed		
Exterior Stairs		Bottom of Step	8.1±	7.3±
Electrical Conduit North Wall Penetrations		Wall Penetration	19.3±	18.5±
Electrical Conduit East Wall Penetrations		Wall Penetration	16.1±	15.3±
Outside Gas Pressure Regulator		Lowest Elevation	8.2±	7.4±
Gas Connection		Wall Penetration	8.8±	8.0±
Generator Exhaust		Invert of Pipe	18.8±	18.0±
Roof Drain		Invert of Pipe	8.8±	8.0±
Wet well Manhole/Hatch Rim		None Observed		
Wet well Vent Pipe		None Observed		

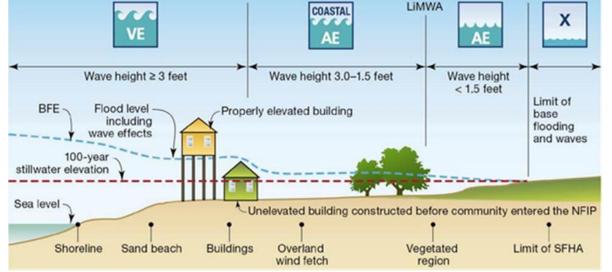
Building Structure and Critical Equipment Inventory Building, System and Component Details: Sand Hills Pump Station

Year Constructed: 1966

Building Type:

- Concrete foundation wall; concrete slab-below-grade
- Building frame: concrete walls
- Structure tie-downs: Yes
- Door Type: Metal
 - Waterproof Door: No

System Components:


Building Interior:

- Air intake vents and Motor-Operated Dampers:
 - o 18" by 88"
 - 28" by 40"
 - o 28" by 88"
- Wall-mounted and Floor Electrical and Pump Control Panels
- Sink:
 - Backflow preventer: Unknown
- Back-up Generator: Gas
- Building Heater: Gas

Well and Pump Details:

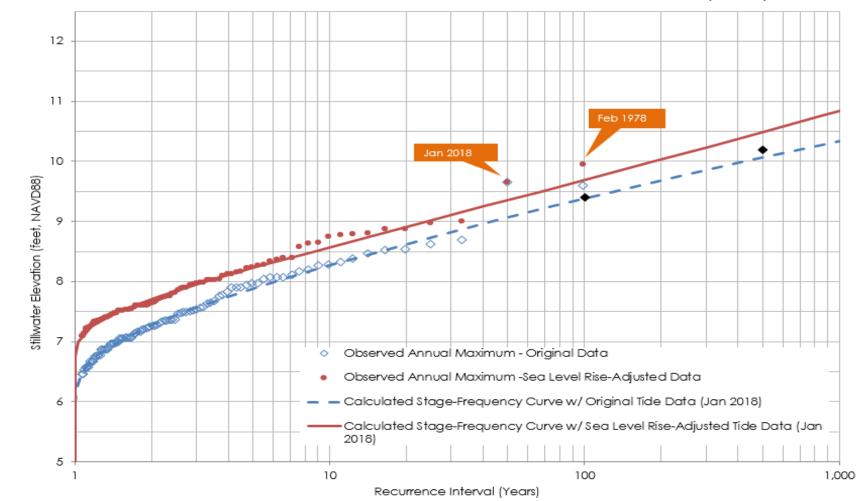
- Two Internal wet wells,
 - Bottom elevation: -19± (NAVD88)
- Three Vertical turbine pumps in dry well, (operable if submersed)
 - Bottom elevation: -19± (NAVD88)
- Comminutor mounted above wet wells.

Interior Components	Elevation (feet, NGVD29)	Elevation (feet, NAVD88)
Critical		
Inside Generator Skid Top Elev.	12.7±	11.9±
Floor Mounted Control Panel	12.2±	11.4±
Circuit Breaker	16.7±	15.9±
Pump Motors	12.5±	11.7±
Non-Critical		
Boiler	2.7±	1.9±
Water Heater	12.7±	11.9±
Comminutor Motor	12.5±	11.7±

Coastal Flood:

- Stillwater
- Wave set-up
- Wave height
- Wave run-up

Coastal Flood Effects:

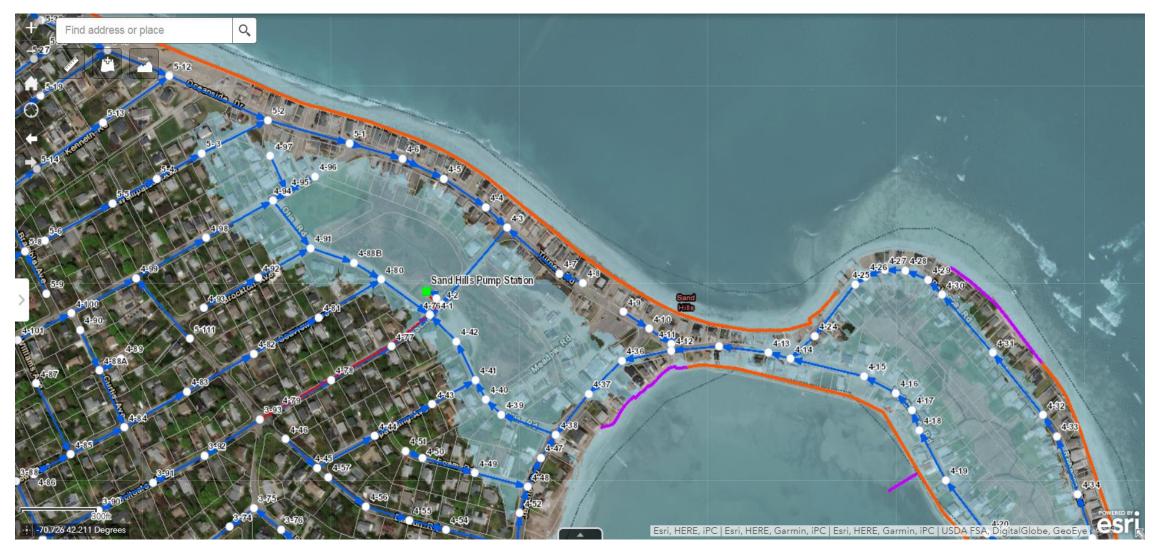

- Flood inundation
- Flood Loads on structure
- Corrosion, mold, etc.

Sands Hill Pump Station

Flood Hazard Probability

Annual Exceedance Probability (AEP)/ Recurrence Interval

Boston NOAA Tide Station Flood-Frequency Curve


GZA Natural Hazard Risk Management, Resilience and Climate Adaptation

Service Life Flood Probability

Recurrence Interval (years)	No. of Event Occurrences:	1	2	3	4	5	6	7	8	9	10
5		100.0%	99.9%	99.7%	99.0%	97.1%	93.3%	87.0%	78.0%	78.0%	54.2%
10		99.5%	96.1%	87.7%	73.3%	55.7%	38.2%	23.6%	13.1%	6.6%	3.0%
20		92.3%	71.8%	46.2%	24.8%	11.4%	4.7%	1.9%	0.9%	0.6%	0.3%
50		63.6%	26.8%	8.4%	2.3%	0.7%	0.4%	0.4%	0.3%	0.3%	0.3%
100		39.5%	9.2%	1.6%	0.3%	0.0%	0	0	0	0	0
500		9.5%	0.5%	0	0	0	0	0	0	0	0

Probability of Meeting or Exceeding Multiple Events during 50 year Service Life

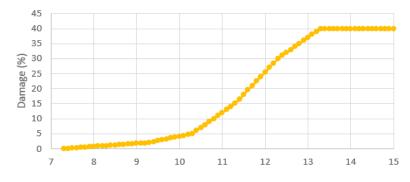
Flood Inundation at Sands Hill Pump Station (Floodwater = 10 feet NAVD88)

Stillwater Elevation (feet; NAVD88)	Depth- Limited Wave Height (feet) ⁽¹⁾	Est. Wave Set-up (feet) ^(1,4)	Est. Total Water Level (feet; NAVD88)	Est. Wave Crest Elevation (feet; NAVD88) ⁽²⁾	Est. Mean Rec (years) ⁽³⁾	urrence In	terval	Flood Inundation due to Total Water Level	Wave Run-up and Overtopping ⁽²⁾
					Current	2040	2070		
			<i>,</i>		-	-		X	
6	-	-	6	-	I	>]	>1	Yes	No
7	1.5	-	7	8.1	4	2	>1	Yes	No
8	2.5	0.4	8.4	10.2	10	5	1	Yes	No
9	3.0	0.5	9.5	11.6	50	20	3	Yes	No
10	4.0	-	10.5	12.6	500	100	10	Yes	Yes
11	4.7	-	11.5	13.6	2,000	1,000	50	Yes	Yes
12	5.5	-	12.5	14.6	-	2,000	500	Yes	Yes
13	6.2	-	13.5	15.6	-	-	-	Yes	Yes
14	7.0	-	14.5	16.6	-	-	-	Yes	Yes
15	7.8	-	15.5	17.6	-	-	-	Yes	Yes

Notes:

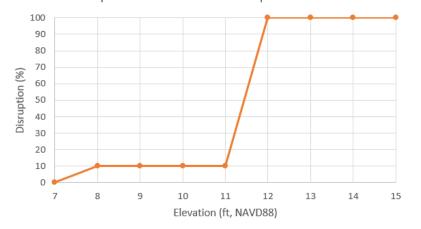
1. Depth-limited wave height adjacent to pump station (+/- Elevation 5 to 7 feet NAVD88). Note that wind fetch within flooded area is small and that depth-limited waves of about >3 feet will not be achieved.

2. Adjacent to pump station (+/- Elevation 5 feet NAVD88). Wave run-up from broken Sand Hill Beach ocean waves may occur within the area of the pump station.


3. Based on NOAA 2017 Intermediate Sea Level Rise Projection.

4. Wave set-up estimated at 0.15 times depth-limited wave height.

Asset Vulnerability: Pump Stations


Pump Station Flood Response

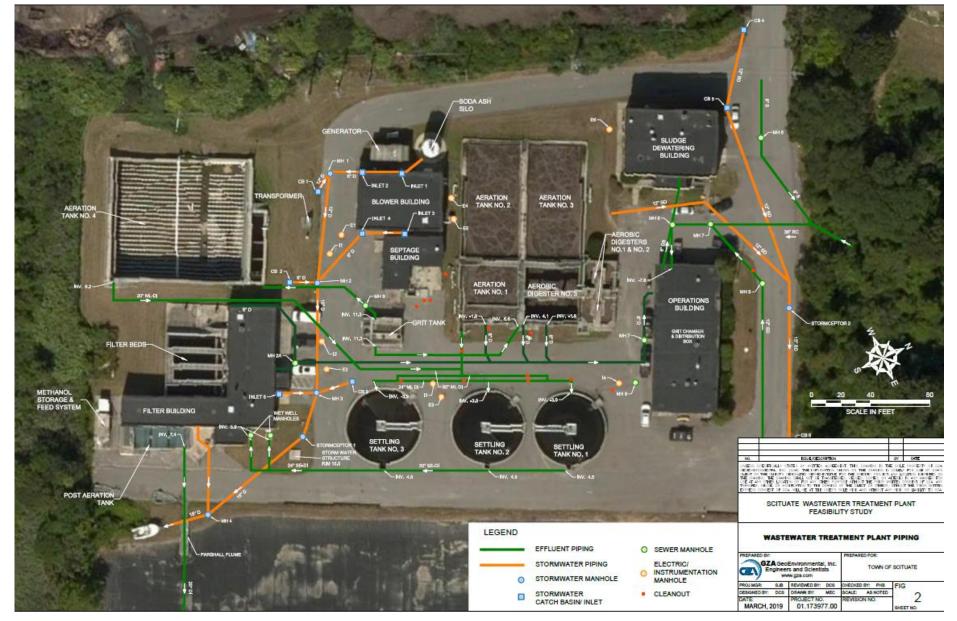
Pump Station Elevation-Damage Curves

Elevation (ft, NAVD88)

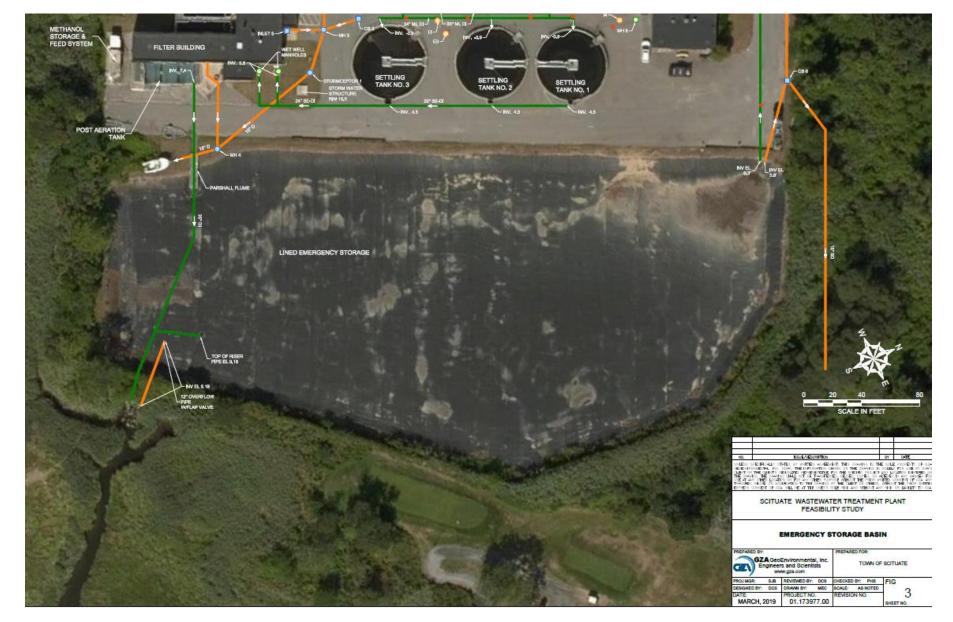
Pump Station Elevation-Disruption Curves

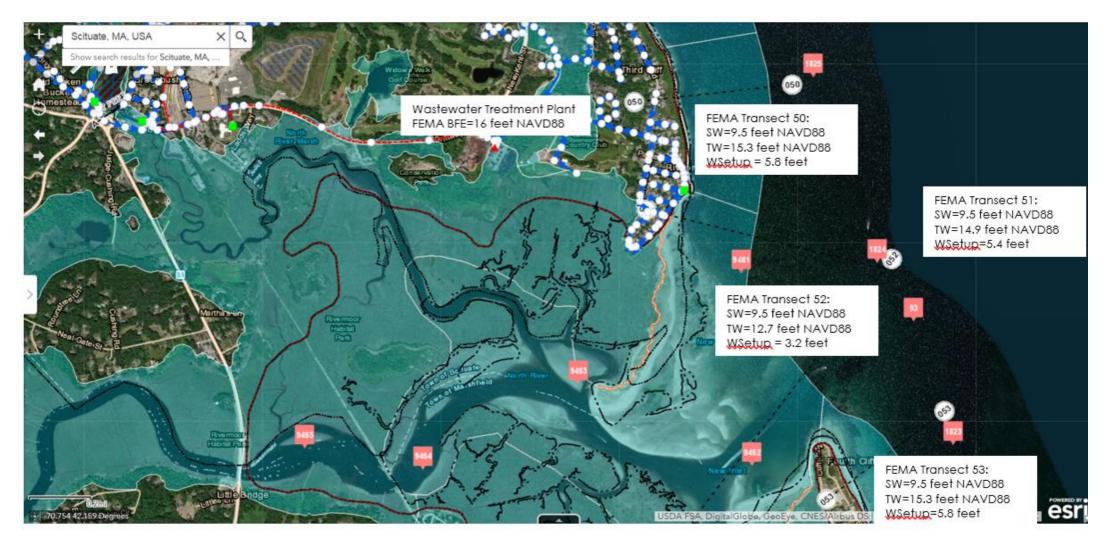
Water Entry Points	ID	Description Critical Elevation	Elevation (feet,	Elevation (feet,				Floo		on, feet NAVD88			_	
			NGVD29)	NAVD88)	7	8	9	10	12	13	14	15	16	17
Windows:		None Observed			,	0	,	10	 12	15	14	15	10	1.
Doors (Personnel and Public):														
Personnel entryway	1	Door Threshold elev.	12.2±	11.4±				1	i i a					
Personnel entryway	2	Door Threshold elev.	12.2±	11.4±						+	<u> </u>			
Vents:									1.					
18'' x 88'' Vent	Vent 1	Bottom of Vent	12.2±	11.4±				1						
28'' x 40'' Vent	Vent 2	Bottom of Vent	16.7±	15.9±										
28'' x 40'' Vent	Vent 3	Bottom of Vent	16.7±	15.9±										
28'' x 88'' Vent	Vent 4	Bottom of Vent	12.2±	11.4±										
28'' x 88'' Vent	Vent 5	Bottom of Vent	12.2±	11.4±					1					
8'' x 8'' Vent	Vent 6	Bottom of Vent	12.4±	11.6±					1					
8'' x 8'' Vent	Vent 7	Bottom of Vent	14.0±	13.2±										
Other									1.1					
Outside Electric Meter Panel		Lowest Elevation	13.9±	13.1±					11					
Pipe Wall Penetrations to daylight or		None Observed							1.					
unsealed vaults/manholes									<u>н</u> –					
Exterior Stairs		Bottom of Step	8.1±	7.3±					11					
Electrical Conduit North Wall		Wall Penetration	19.3±	18.5±										
Penetrations														
Electrical Conduit East Wall		Wall Penetration	16.1±	15.3±										
Penetrations									<u> </u>					
Outside Gas Pressure Regulator		Lowest Elevation	8.2±	7.4±					Li					
Gas Connection		Wall Penetration	8.8±	8.0±				<u> </u>	<u> </u>					
Generator Exhaust		Invert of Pipe	18.8±	18.0±										
Roof Drain		Invert of Pipe	8.8±	8.0±					μ					
Wet Well Manhole/Hatch Rim		None Observed											1	
Wet Well Vent Pipe		None Observed						1						
Critical Interior Components														
Inside Generator Skid Top Elev.		Lowest Elevation	12.7±	11.9±					<u> </u>					
Floor Mounted Control Panel		Lowest Elevation	12.2±	11.4±					<u> </u>					
Circuit Breaker		Lowest Elevation	16.7±	15.9±										
Pump Motors		Lowest Elevation	12.5±	11.7±									1	
Non-Critical Interior Components									11					
Boiler		Lowest Elevation	2.7±	1.9±										
Water Heater		Lowest Elevation	12.7±	11.9±				1	11					
Comminutor Motor		Lowest Elevation	12.7±	11.5±					П					
· · · · · · · · · · · · · · · · · · ·									Π.					
								1	11.5				1 - E	
								1.1	it –				i	
									A. 7				1.00	

Findings: System Vulnerability


3. Treatment Plant Vulnerability:

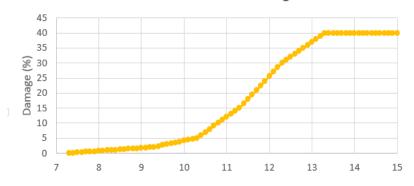
- Treatment Plant located within FEMA flood hazard areas (AE El 16 ft NAVD88
- Ground surface +/- 11 to 15 feet NAVD88
- Impacts to plant start at flood water elevation +/- 10 feet (+/- 20 to 50 yr rec. int.)
- Significant impacts at flood water elevation +/- 12 feet (+/- 50 to 100 yr rec. int./with waves)
- Failure impacts at flood water elevation +/- 13 feet (+/- 100 yr rec. int./with waves)
- Hydraulic system flow capacity impacts potentially starting at at flood water elevation +/- 10 feet (+/- 20 to 50 yr rec. int.)


Detailed Asset Inventory: Treatment Plant

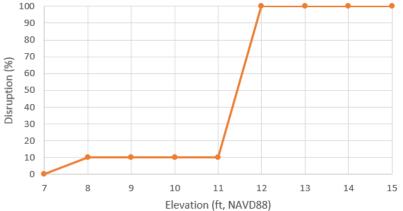

Detailed Asset Inventory: Treatment Plant

Detailed Asset Inventory: Treatment Plant

Flood Hazard Characterization: Treatment Plant


FEMA Flood Insurance Rate Map (FIRM) at Wastewater Treatment Plant

Flood Inundation (Floodwater = 11 feet NAVD88)


Asset Vulnerability: Treatment Plant

Treatment Plant Elevation-Damage Curves

Elevation (ft, NAVD88)

Treatment Plant SSCs	Flood Elevation, feet NAVD88											
				1	1.1							
	7	8	9	10	1	12	13	14	15	16	17	
Sludge Dewatering Building												
Operations Building												
Septage Building												
Blower Building												
Generator Building												
Filter Building												
Methane Building												
Aeration Tanks												
Aerobic Digesters												
Soda Ash Silo												
Settling Tanks												
Electrical												
Instrumentation												
Transformer												
Stormwater, Infrastructure												
Sewer Infrastructure												
Lagoon Levee (Dike Crest)												
Lagoon Overflow Outlet												
Discharge Pipe Outlet												
Parshall Flume Outlet												
Notes:				1								
Green indicates No Impact.				- 11								
Red indicates Some to Significant Impact.												
Bold SSC indicates that structure is critical to complete	te treatme	ent plant fa	ilure.		100 yr	TWL			FEMA	A BFE		
				50 yr+/	_							

Hydraulic Capacity: Treatment Plant

Allow for peak hourly flows to be passed through the plant with the receiving water at the 100-year recurrence interval flood elevation (including considerations of climate change):

• Design: El. 9.5 NAVD88

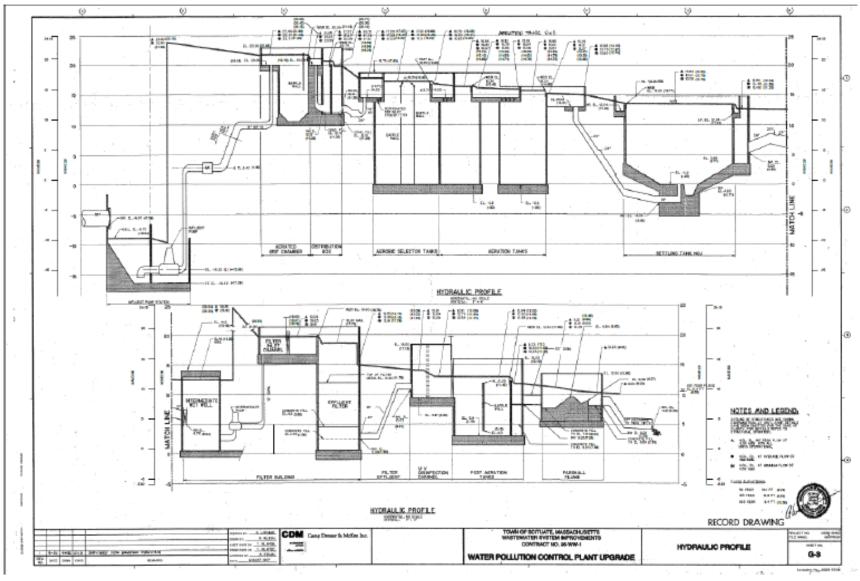
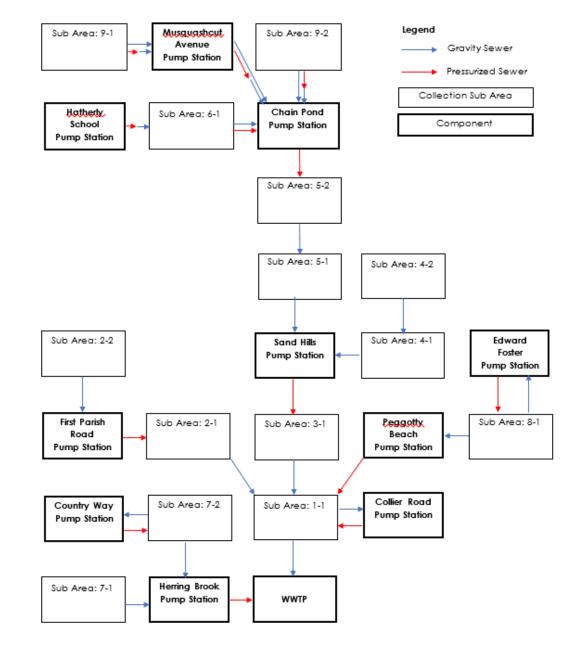



Figure 3-10 Hydraulic Profile

Findings: System Vulnerability

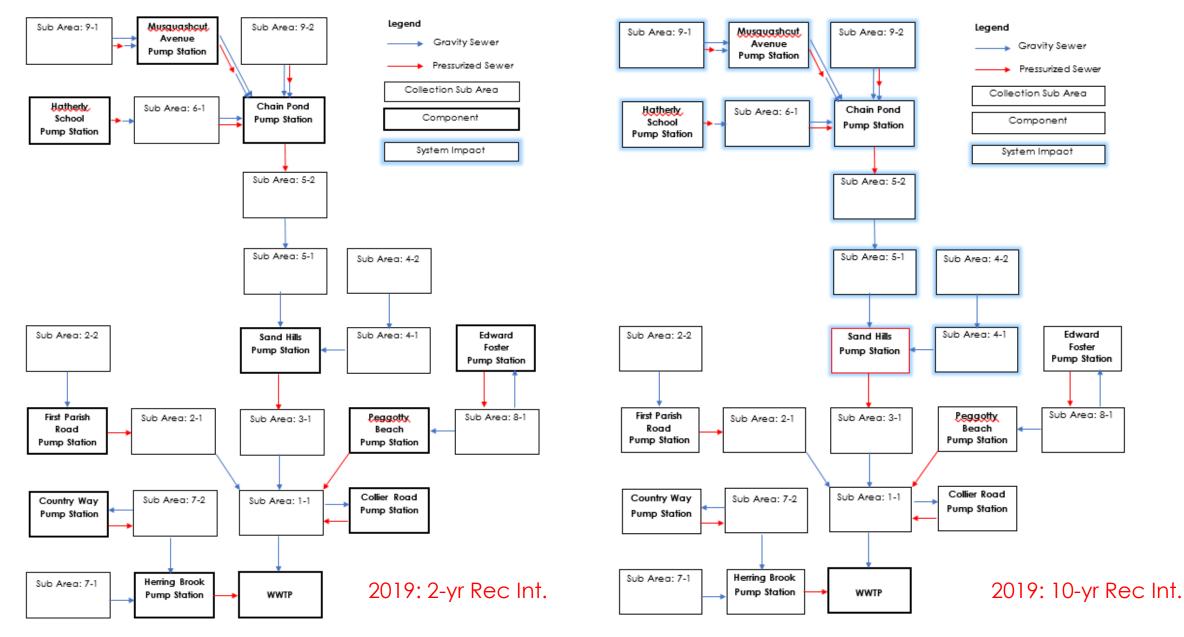


Figure 4: Schematic Chart of Scituate Wastewater Collections System: 10-year recurrence interval (2019)

Figure 3: Schematic Chart of Scituate Wastewater Collections System: 2 -year recurrence interval (2019)

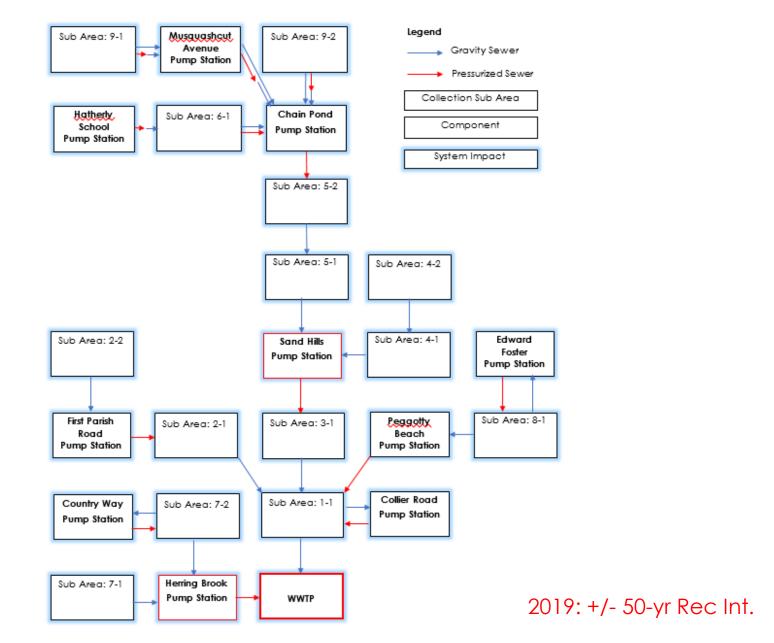
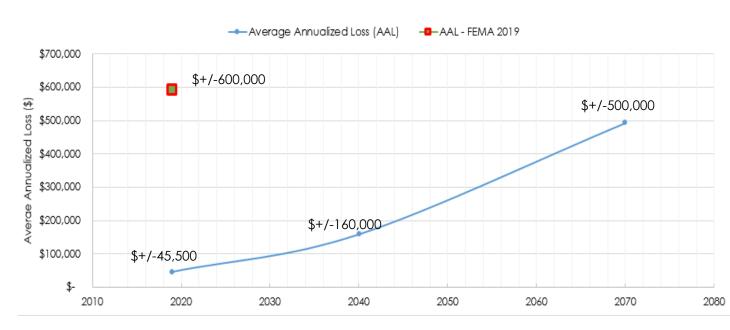
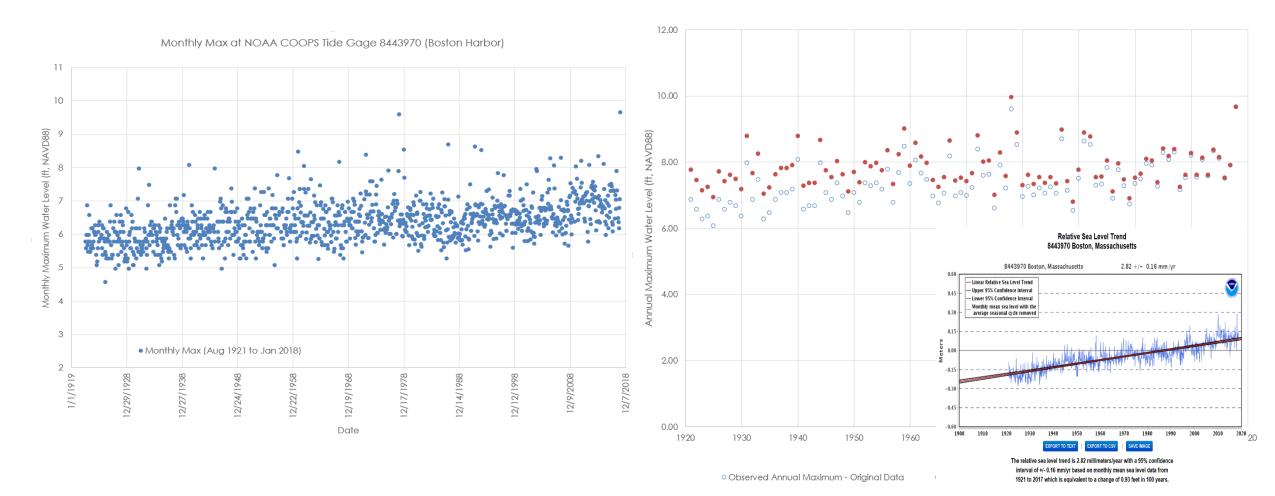



Figure 5: Schematic Chart of Scituate Wastewater Collections System: 50-year recurrence interval (2019)

Findings: Predicted Financial Loss

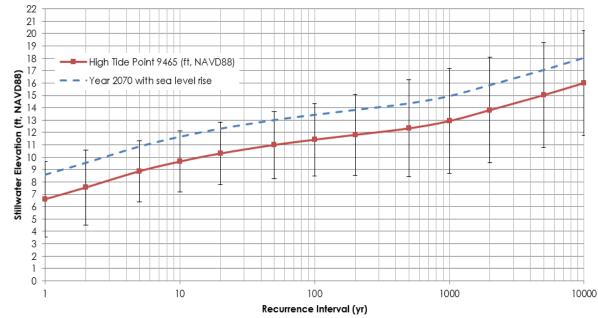
Average Annualized Loss (\$)

Estimated Loss (\$)

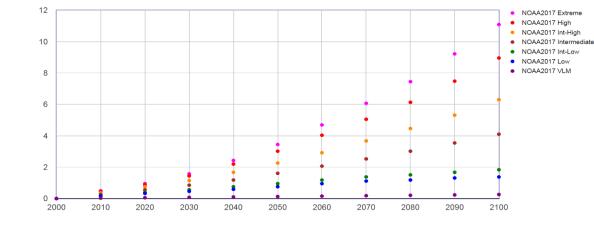

Preliminary

Approximate AAL per sewered building: Best Estimate 2019: +/-\$20 FEMA 2019: +/- \$180 Best estimate 2040: +/- \$50 Best Estimate 2070: +/- \$150

- Increased capital costs
- Increased operating costs
- Increased debt service
- Increased user rates


Effects of Sea Level Rise

NOAA Boston Tide Gage Monthly and Annual Maximum Water Levels:



Predicted Sea Level Rise(NOAA 2017 at Boston Tide Gage) – Corrected to 2020

Year	NOAA2017	NOAA2017	NOAA2017	NOAA2017	NOAA2017	NOAA2017	NOAA2017
	VLM	Low	Int-Low	Intermediate	Int-High	High	Extreme
2020	-	-	-	-	-	-	-
2030	0.03	0.13	0.17	0.29	0.4	0.55	0.62
2040	0.05	0.26	0.36	0.62	0.92	1.31	1.48
2050	0.08	0.42	0.56	1.05	1.51	2.13	2.49
2060	0.11	0.62	0.79	1.51	2.17	3.15	3.74
2070	0.13	0.79	0.99	1.97	2.92	4.16	5.12
2080	0.16	0.85	1.12	2.46	3.71	5.25	6.5
2090	0.18	0.98	1.28	2.98	4.56	6.59	8.27
2100	0.21	1.05	1.45	3.54	5.55	8.07	10.14

NOAA et al. 2017 Relative Sea Level Change Scenarios for : BOSTON

Year