APPENDIX G 90% DESIGN SUPPORTING CALCULATIONS

90% Design Supporting Calculations

ADJUSTABLE REMOVABLE WEIRS FULL OPEN TABLE FOR DWG C-112 WEIR ELEVATIONS

n		О
- PK	ev	7

	Proposed Fishway Weir Data			Fishway Spring	(In-migration)	Fishway Fall (out-migration)	Fishway Spring	(In-migration)	Fishway Fall (out-migration)		
Location	Bottom El. (ft NAVD 88)	Notch El. (ft NAVD 88)	Weir Crest El. (ft NAVD 88)	Minimum Pool Level (ft NAVD 88)	Maximum Pool Level (ft NAVD 88)	Minimum Pool Level (ft NAVD 88)	Maximum Pool Level (ft NAVD 88)	Minimum Flow (cfs)	Maximum Flow (cfs)	Minimum Flow (cfs)	Maximum Flow (cfs)	
Entrance Pool	23.90											
Weir #1 (Fixed)	24.11	25.61	26.28	26.36	26.94	26.03	26.28	1.08	4.07	0.42	0.84	
Weir #2 (Fixed)	24.77	26.27	26.93	27.02	27.60	26.68	26.93	1.08	4.07	0.42	0.84	
Weir #3 (Fixed)	25.42	26.92	27.59	27.67	28.26	27.34	27.59	1.08	4.07	0.42	0.84	
Weir #4 (Fixed)	26.08	27.58	28.25	28.33	28.91	27.99	28.24	1.08	4.07	0.42	0.84	
Weir #5 (Fixed)	26.73	28.23	28.90	28.99	29.57	28.65	28.90	1.08	4.07	0.42	0.84	
Weir #6 (Fixed)	27.39	28.89	29.56	29.64	30.23	29.31	29.56	1.08	4.07	0.42	0.84	
Weir #7 (Fixed)	28.05	29.55	30.21	30.30	30.88	29.96	30.21	1.08	4.07	0.42	0.84	
Weir #8 (Fixed)	28.70	30.20	30.87	30.95	31.54	30.62	30.87	1.08	4.07	0.42	0.84	
Weir #9 (Fixed)	29.36	30.86	31.53	31.61	32.19	31.28	31.53	1.08	4.07	0.42	0.84	
Weir #10 (Fixed)	30.02	31.52	32.18	32.27	32.85	31.93	32.18	1.08	4.07	0.42	0.84	
Centerline Turning Pool	30.40			32.27	32.85	31.93	32.18					
Weir #11 (Fixed)	30.70	32.20	32.87	32.95	33.53	32.62	32.87	1.08	4.07	0.42	0.84	
Weir #12 (Fixed)	31.40	32.90	33.57	33.65	34.24	33.32	33.57	1.08	4.07	0.42	0.84	
Weir #13 (Fixed)	32.11	33.61	34.27	34.36	34.94	34.02	34.27	1.08	4.07	0.42	0.84	
Weir #14 (Fixed)	32.81	34.31	34.98	35.06	35.64	34.73	34.98	1.08	4.07	0.42	0.84	
Weir #15 (Removable)	33.26	35.01	35.68	35.76	36.34	35.43	35.68	1.08	4.07	0.42	0.84	
Weir #16 (Removable)	33.22	35.71	36.38	36.46	37.04	36.13	36.38	1.08	4.07	0.42	0.84	
Weir #17 (Removable)	33.19	36.41	37.08	37.16	37.74	36.83	37.08	1.08	4.07	0.42	0.84	
Weir #18 (Removable)	33.15	37.11	37.78	37.86	38.44	37.53	37.78	1.08	4.07	0.42	0.84	
Weir #19 (Removable)	33.11	37.81	38.48	38.56	39.14	38.23	38.48	1.08	4.07	0.42	0.84	
Weir #20 (Removable)	33.07	38.51	39.18	39.26	39.84	38.93	39.18	1.08	4.07	0.42	0.84	
Weir #21 (Removable)	33.04	39.21	39.88	39.96	40.54	39.63	39.88	1.08	4.07	0.42	0.84	
Isolation Gate	32.93				40.54 Bottom Isolation Gate Full Open El.38.5 ft							
Stoplog Guide	32.86							gate at spillway g				
Exit Channel	32.62							Top at El. 42.86	- *			

FISHWAY BAFFURS DE 1629 90% DESIGN RESERVOIR DAM 194-6444 3/14/19 PD. 10F 5 TCC / TA

ADJUSTABLE REMOVABLE WEIRS FULL OPEN TABLE FOR DWG C-112 WEIR ELEVATIONS

Exit Channel

Rev 8

32.62

	Proposed Fishway Weir Data			Fishway Spring	g (In-migration)	Adjustable	e Weir Position	Fishway Spring (In-migration)		
Location	Bottom El. (ft NAVD 88)	Notch El. (ft NAVD 88)	Weir Crest El. (ft NAVD 88)	Minimum Pool Level (ft NAVD 88)	Maximum Pool Level (ft NAVD 88)	% Open	Position	Minimum Flow (cfs)	Maximum Flow (cfs)	
Entrance Pool	23.90			·	1991					
Weir #1 (Fixed) Adjustable Weir Full Open	24.11	25.61	26.28	26.36	26.94	n/a	n/a	1.08	4.07	
Weir #2 (Fixed) Adjustable Weir Full Open	24.77	26.27	26.93	27.02	27.60	n/a	n/a	1.08	4.07	
Weir #3 (Fixed) Adjustable Weir Full Open	25.42	26.92	27.59	27.67	28.26	n/a	n/a	1.08	4.07	
Weir #4 (Fixed) Adjustable Weir Full Open	26.08	27.58	28.25	28.33	28.91	n/a	n/a	1.08	4.07	
Weir #5 (Fixed) Adjustable Weir Full Open	26.73	28.23	28.90	28.99	29.57	n/a	n/a	1.08	4.07	
Weir #6 (Fixed) Adjustable Weir Full Open	27.39	28.89	29.56	29.64	30.23	n/a	n/a	1.08	4.07	
Weir #7 (Fixed) Adjustable Weir Full Open	28.05	29.55	30.21	30.30	30.88	n/a	n/a	1.08	4.07	
Weir #8 (Fixed) Adjustable Weir Full Open	28.70	30.20	30.87	30.95	31.54	n/a	n/a	1.08	4.07	
Weir #9 (Fixed) Adjustable Weir Full Open	29.36	30.86	31.53	31.61	32.19	n/a	n/a	1.08	4.07	
Weir #10 (Fixed) Adjustable Weir Full Open	30.02	31.52	32.18	32.27	32.85	n/a	n/a	1.08	4.07	
Centerline Turning Pool	30.40			32.27	32.85	·	•			
Weir #11 (Fixed) Adjustable Weir Full Open	30.70	32.20	32.87	32.95	33.53	n/a	n/a	1.08	4.07	
Weir #12 (Fixed) Adjustable Weir Full Open	31.40	32.90	33.57	33.65	34.24	n/a	n/a	1.08	4.07	
Weir #13 (Fixed) Adjustable Weir Full Open	32.11	33.61	34.27	34.36	34.94	n/a	n/a	1.08	4.07	
Weir #14 (Fixed) Adjustable Weir Full Open	32.81	34.31	34.98	35.06	35.64	n/a	n/a	1.08	4.07	
Weir #15 (Removable) Adjustable Weir Full Open	33.26	35.01	35.68	35.76	36.34	100%	Full Down	1.08	4.07	
Weir #15 (Removable) Adjustable Weir Partially Open	33.26	35.13	35.80		36.34	75%	Partially Down		3.31	
Weir #15 (Removable) Adjustable Weir Partially Open	33.26	35.26	35.93		36.34	50%	Partially Down		2.58	
Weir #16 (Removable) Adjustable Weir Full Open	33.22	35.71	36.38	36.46	37.04	100%	Full Down	1.08	4.07	
Weir #16 (Removable) Adjustable Weir Partially Open	33.22	35.83	36.50		37.04	75%	Partially Down		3.31	
Weir #16 (Removable) Adjustable Weir Partially Open	33.22	35.96	36.63		37.04	50%	Partially Down		2.58	
Weir #17 (Removable) Adjustable Weir Full Open	33.19	36.41	37.08	37.16	37.74	100%	Full Down	1.08	4.07	
Weir #17 (Removable) Adjustable Weir Partially Open	33.19	36.53	37.20		37.74	75%	Partially Down		3.30	
Weir #17 (Removable) Adjustable Weir Partially Open	33.19	36.66	37.33		37.74	50%	Partially Down		2.58	
Weir #18 (Removable) Adjustable Weir Full Open	33.15	37.11	37.78	37.86	38.44	100%	Full Down	1.08	4.07	
Weir #18 (Removable) Adjustable Weir Partially Open	33.15	37.23	37.90		38.44	75%	Partially Down		3.30	
Weir #18 (Removable) Adjustable Weir Partially Open	33.15	37.36	38.03		38.44	50%	Partially Down		2.58	
Weir #19 (Removable) Adjustable Weir Full Open	33.11	37.81	38.48	38.56	39.14	100%	Full Down	1.08	4.07	
Weir #19 (Removable) Adjustable Weir Partially Open	33.11	37.93	38.60	- 4	39.14	75%	Partially Down		3.30	
Weir #19 (Removable) Adjustable Weir Partially Open	33.11	38.06	38.73		39.14	50%	Partially Down		2.58	
Weir #20 (Removable) Adjustable Weir Full Open	33.07	38.51	39.18	39.26	39.84	100%	Full Down	1.08	4.07	
Weir #20 (Removable) Adjustable Weir Partially Open	33.07	38.63	39.30		39.84	75%	Partially Down		3.30	
Weir #20 (Removable) Adjustable Weir Partially Open	33.07	38.76	39.43		39.84	50%	Partially Down		2.58	
Weir #21 (Removable) Adjustable Weir Full Open	33.04	39.21	39.88	39.96	40.54	100%	Full Down	1.08	4.07	
Weir #21 (Removable) Adjustable Weir Partially Open	33.04	39.33	40.00		40.54	75%	Partially Down		3.30	
Weir #21 (Removable) Adjustable Weir Partially Open	33.04	39.46	40.13		40.54	50%	Partially Down		2.58	
Isolation Gate	32.93				40.54		Bottom Isolatio	n Gate Full Open	El.38.5 ft	
Isolation Gate	32.93						Close isolation	gate at spillway ga	ate full open	
Stoplog Guide	32.86						Stoplog Down	Top at El. 42.86 f	t	
- 11 1										

FISHWAY BAFFUES
907. DESIGN
RESERVOIR DAM
194-6444
3/14/19 Pg. ZOFS
TCC/TA

ADJUSTABLE REMOVABLE WEIRS PARTIALLY CLOSED TO LIMIT Qmax = 3.3 cfs in March-April TABLE FOR DWG C-112 WEIR ELEVATIONS

32.62

Exit Channel

п		0
м	ev	~

	Propo	sed Fishway We	ir Data		g (In-migration)	Adjustable	Weir Position	Fishway Spring (In-migration)		
Location	Bottom El. (ft NAVD 88)	Notch El. (ft NAVD 88)	Weir Crest El. (ft NAVD 88)	Minimum Pool Level (ft NAVD 88)	Maximum Pool Level (ft NAVD 88)	% Open	Position	Minimum Flow (cfs)	Maximum Flow (cfs)	
Entrance Pool	23.90			((1214,110,00)					
Weir #1 (Fixed) Adjustable Weir 74% Open	24.11	25.61	26.28	26.36	26.82	n/a		1.08	3.29	
Weir #2 (Fixed) Adjustable Weir 74% Open	24.77	26.27	26.93	27.02	27.47	n/a		1.08	3.29	
Weir #3 (Fixed) Adjustable Weir 74% Open	25.42	26.92	27.59	27.67	28.13	n/a		1.08	3.29	
Weir #4 (Fixed) Adjustable Weir 74% Open	26.08	27.58	28.25	28.33	28.79	n/a		1.08	3.29	
Weir #5 (Fixed) Adjustable Weir 74% Open	26.73	28.23	28.90	28.99	29.44	n/a		1.08	3.29	
Weir #6 (Fixed) Adjustable Weir 74% Open	27.39	28.89	29.56	29.64	30.10	n/a		1.08	3.29	
Weir #7 (Fixed) Adjustable Weir 74% Open	28.05	29.55	30.21	30.30	30.75	n/a		1.08	3.29	
Weir #8 (Fixed) Adjustable Weir 74% Open	28.70	30.20	30.87	30.95	31.41	n/a		1.08	3.29	
Weir #9 (Fixed) Adjustable Weir 74% Open	29.36	30.86	31.53	31.61	32.07	n/a		1.08	3.29	
Weir #10 (Fixed) Adjustable Weir 74% Open	30.02	31.52	32.18	32.27	32.72	n/a		1.08	3.29	
Centerline Turning Pool	30.40	34		32.27	32.72	.,_		3.33	3.2 5	
Weir #11 (Fixed) Adjustable Weir 74% Open	30.70	32.20	32.87	32.95	33.41	n/a		1.08	3.29	
Weir #12 (Fixed) Adjustable Weir 74% Open	31.40	32.90	33.57	33.65	34.11	n/a		1.08	3.29	
Weir #13 (Fixed) Adjustable Weir 74% Open	32.11	33.61	34.27	34.36	34.81	n/a		1.08	3.29	
Weir #14 (Fixed) Adjustable Weir 74% Open	32.81	34.31	34.98	35.06	35.52	n/a		1.08	3.29	
Weir #15 (Removable) Adjustable Weir Full Open	33.26	35.01	35.68	35.76	36.34	100%	Full Down	1.08	4.07	
Weir #15 (Removable) Adjustable Weir Partially Open	33.26	35.13	35.80	1,7/	36.34	75%	Partially Down		3.31	
Weir #15 (Removable) Adjustable Weir Partially Open	33.26	35.26	35.93		36.34	50%	Partially Down		2.58	
Weir #16 (Removable) Adjustable Weir Full Open	33.22	35.71	36.38	36.46	37.04	100%	Full Down	1.08	4.07	
Weir #16 (Removable) Adjustable Weir Partially Open	33.22	35.83	36.50		37.04	75%	Partially Down		3.31	
Weir #16 (Removable) Adjustable Weir Partially Open	33.22	35.96	36.63		37.04	50%	Partially Down		2.58	
Weir #17 (Removable) Adjustable Weir Full Open	33.19	36.41	37.08	37.16	37.74	100%	Full Down	1.08	4.07	
Weir #17 (Removable) Adjustable Weir Partially Open	33.19	36.53	37.20		37.74	75%	Partially Down		3.30	
Weir #17 (Removable) Adjustable Weir Partially Open	33.19	36.66	37.33		37.74	50%	Partially Down		2.58	
Weir #18 (Removable) Adjustable Weir Full Open	33.15	37.11	37.78	37.86	38.44	100%	Full Down	1.08	4.07	
Weir #18 (Removable) Adjustable Weir Partially Open	33.15	37.23	37.90		38.44	75%	Partially Down	2.00	3.30	
Weir #18 (Removable) Adjustable Weir Partially Open	33.15	37.36	38.03		38.44	50%	Partially Down		2.58	
Weir #19 (Removable) Adjustable Weir Full Open	33.11	37.81	38.48	38.56	39.14	100%	Full Down	1.08	4.07	
Weir #19 (Removable) Adjustable Weir Partially Open	33.11	37.93	38.60		39.14	75%	Partially Down		3.30	
Weir #19 (Removable) Adjustable Weir Partially Open	33.11	38.06	38.73		39.14	50%	Partially Down		2.58	
Weir #20 (Removable) Adjustable Weir Full Open	33.07	38.51	39.18	39.26	39.84	100%	Full Down	1.08	4.07	
Weir #20 (Removable) Adjustable Weir Partially Open	33.07	38.63	39.30		39.84	75%	Partially Down		3.30	
Weir #20 (Removable) Adjustable Weir Partially Open	33.07	38.76	39.43		39.84	50%	Partially Down		2.58	
Weir #21 (Removable) Adjustable Weir Full Open	33.04	39.21	39.88	39.96	40.54	100%	Full Down	1.08	4.07	
Weir #21 (Removable) Adjustable Weir Partially Open	33.04	39.33	40.00		40.54	75%	Partially Down		3.30	
Weir #21 (Removable) Adjustable Weir Partially Open	33.04	39.46	40.13		40.54	50%	Partially Down		2.58	
Isolation Gate	32.93	2			40.54		Bottom Isolatio	n Gate Full Oper		
Isolation Gate	32.93						Close isolation g			
Stoplog Guide	32.86							Top at El. 42.86	•	
							Stobiog DOWII	10h at 11. 42.00	16	

FISHWAY BAPFLES
907. DESIGN
RESERVOIR DAM
194-6444
3/14/19 PS30F5
TCC/TA

ADJUSTABLE REMOVABLE WEIRS PARTIALLY CLOSED TO LIMIT Qmax = 2.56 cfs in May TABLE FOR DWG C-112 WEIR ELEVATIONS

Exit Channel

-	_		•
ĸ	е	v	2

Location Bottom El. Notch El. Weir Crest El. (ft NAVD 88) (ft NAVD 88) (ft NAVD 88) Entrance Pool Bottom El. Notch El. Weir Crest El. (ft NAVD 88) (ft NAVD 88) (ft NAVD 88) (ft NAVD 88) Entrance Pool Aminimum Pool Maximum Level Pool Level % Open Position Flow (cfs) Flow (cfs)	
Weir #1 (Fixed) Adjustable Weir 50% Open 24.11 25.61 26.28 26.36 26.70 1.08 2.60	0
Weir #2 (Fixed) Adjustable Weir 50% Open 24.77 26.27 26.93 27.02 27.35 1.08 2.60	
Weir #3 (Fixed) Adjustable Weir 50% Open 25.42 26.92 27.59 27.67 28.01 1.08 2.60	
Weir #4 (Fixed) Adjustable Weir 50% Open 26.08 27.58 28.25 28.33 28.67 1.08 2.60	
Weir #5 (Fixed) Adjustable Weir 50% Open 26.73 28.23 28.90 28.99 29.32 1.08 2.60	
Weir #6 (Fixed) Adjustable Weir 50% Open 27.39 28.89 29.56 29.64 29.98 1.08 2.60	
Weir #7 (Fixed) Adjustable Weir 50% Open 28.05 29.55 30.21 30.30 30.63 1.08 2.60	
Weir #8 (Fixed) Adjustable Weir 50% Open 28.70 30.20 30.87 30.95 31.29 1.08 2.60	
Weir #9 (Fixed) Adjustable Weir 50% Open 29.36 30.86 31.53 31.61 31.95 1.08 2.60	
Weir #10 (Fixed) Adjustable Weir 50% Open 30.02 31.52 32.18 32.27 32.60 1.08 2.60	
Centerline Turning Pool 30.40 32.27 32.60	
Weir #11 (Fixed) Adjustable Weir 50% Open 30.70 32.20 32.87 32.95 33.29 1.08 2.60	0
Weir #12 (Fixed) Adjustable Weir 50% Open 31.40 32.90 33.57 33.65 33.99 1.08 2.60	
Weir #13 (Fixed) Adjustable Weir 50% Open 32.11 33.61 34.27 34.36 34.69 1.08 2.60	
Weir #14 (Fixed) Adjustable Weir 50% Open 32.81 34.31 34.98 35.06 35.40 1.08 2.60	
Weir #15 (Removable) Adjustable Weir Full Open 33.26 35.01 35.68 35.76 36.34 100% Full Down 1.08 4.07	
Weir #15 (Removable) Adjustable Weir Partially Open 33.26 35.13 35.80 36.34 75% Partially Down 3.31	
Weir #15 (Removable) Adjustable Weir Partially Open 33.26 35.26 35.93 36.34 50% Partially Down 2.58	
Weir #16 (Removable) Adjustable Weir Full Open 33.22 35.71 36.38 36.46 37.04 100% Full Down 1.08 4.07	
Weir #16 (Removable) Adjustable Weir Partially Open 33.22 35.83 36.50 37.04 75% Partially Down 3.31	
Weir #16 (Removable) Adjustable Weir Partially Open 33.22 35.96 36.63 37.04 50% Partially Down 2.58	
Weir #17 (Removable) Adjustable Weir Full Open 33.19 36.41 37.08 37.16 37.74 100% Full Down 1.08 4.07	
Weir #17 (Removable) Adjustable Weir Partially Open 33.19 36.53 37.20 37.74 75% Partially Down 3.30	
Weir #17 (Removable) Adjustable Weir Partially Open 33.19 36.66 37.33 37.74 50% Partially Down 2.58	
Weir #18 (Removable) Adjustable Weir Full Open 33.15 37.11 37.78 37.86 38.44 100% Full Down 1.08 4.07	
Weir #18 (Removable) Adjustable Weir Partially Open 33.15 37.23 37.90 38.44 75% Partially Down 3.30	
Weir #18 (Removable) Adjustable Weir Partially Open 33.15 37.36 38.03 38.44 50% Partially Down 2.58	
Weir #19 (Removable) Adjustable Weir Full Open 33.11 37.81 38.48 38.56 39.14 100% Full Down 1.08 4.07	
Weir #19 (Removable) Adjustable Weir Partially Open 33.11 37.93 38.60 39.14 75% Partially Down 3.30	
Weir #19 (Removable) Adjustable Weir Partially Open 33.11 38.06 38.73 39.14 50% Partially Down 2.58	
Weir #20 (Removable) Adjustable Weir Full Open 33.07 38.51 39.18 39.26 39.84 100% Full Down 1.08 4.07	
Weir #20 (Removable) Adjustable Weir Partially Open 33.07 38.63 39.30 39.84 75% Partially Down 3.30	
Weir #20 (Removable) Adjustable Weir Partially Open 33.07 38.76 39.43 39.84 50% Partially Down 2.58	
Weir #21 (Removable) Adjustable Weir Full Open 33.04 39.21 39.88 39.96 40.54 100% Full Down 1.08 4.07	
Weir #21 (Removable) Adjustable Weir Partially Open 33.04 39.33 40.00 40.54 75% Partially Down 3.30	
Weir #21 (Removable) Adjustable Weir Partially Open 33.04 39.46 40.13 40.54 50% Partially Down 2.58	
Isolation Gate 32.93 40.54 Bottom Isolation Gate Full Open El.38.5 ft	
Isolation Gate 32.93 Close isolation gate at spillway gate full of	
Stoplog Guide 32.86 Stoplog Down Top at El. 42.86 ft	-

32.62

FISHWAY BAFFULS

90% DESIGN

RESERVOIR DAM

194-6444

3/14/19 PJ.40F5

TCE/TA

ADJUSTABLE REMOVABLE WEIRS Rev 8 **TABLE FOR DWG C-112 WEIR ELEVATIONS** File: P:\Scituate Reservoir Dam - 2018\90% Design \Weir Heights Rev 7.xlsx; sheet Proposed 2019 Weir Config.; cells H224 - P266 Adjustable **Proposed Fishway Weir Data** Fishway Spring (In-migration) Fishway Fall (out-migration) **Weir Position** Maximum Pool Minimum Minimum Maximum Pool Weir Crest El. Bottom El. Notch El. Location Pool Level Level (ft % Open Pool Level Level (ft (ft NAVD 88) (ft NAVD 88) (ft NAVD 88) (ft NAVD 88) NAVD 88) (ft NAVD 88) NAVD 88) **Entrance Pool** 23.90 Weir #1 (Fixed) Adjustable Weir 50% Open 24.11 25.61 26.28 26.36 26.70 n/a 26.03 26.28 Weir #2 (Fixed) Adjustable Weir 50% Open 24.77 26.27 26.93 27.02 27.35 26.68 n/a 26.93 Weir #3 (Fixed) Adjustable Weir 50% Open 26.92 25.42 27.59 27.67 n/a 28.01 27.34 27.59 Weir #4 (Fixed) Adjustable Weir 50% Open 26.08 27.58 28.25 28.33 28.67 n/a 27.99 28.24 Weir #5 (Fixed) Adjustable Weir 50% Open 26.73 28.23 28.90 28.99 29.32 n/a 28.65 28.90 Weir #6 (Fixed) Adjustable Weir 50% Open 27.39 28.89 29.56 n/a 29.64 29.98 29.31 29.56 Weir #7 (Fixed) Adjustable Weir 50% Open 28.05 29.55 30.21 30.30 30.63 n/a 29.96 30.21 Weir #8 (Fixed) Adjustable Weir 50% Open 28.70 30.20 30.87 30.95 31.29 n/a 30.62 30.87 Weir #9 (Fixed) Adjustable Weir 50% Open 29.36 30.86 31.53 31.61 31.95 n/a 31.28 31.53 Weir #10 (Fixed) Adjustable Weir 50% Open 30.02 31.52 32.18 32.27 32.60 n/a 31.93 32.18 Centerline Turning Pool 30.40 32.27 32.60 31.93 32.18 Weir #11 (Fixed) Adjustable Weir 50% Open 30.70 32.87 32.95 32.20 33.29 n/a 32.62 32.87 Weir #12 (Fixed) Adjustable Weir 50% Open 31.40 32.90 33.57 33.65 33.99 n/a 33.32 33.57 Weir #13 (Fixed) Adjustable Weir 50% Open 32.11 33.61 34.27 34.36 34.69 n/a 34.02 34.27 Weir #14 (Fixed) Adjustable Weir 50% Open 32.81 34.31 34.98 35.06 35.40 n/a 34.73 34.98 Weir #15 (Removable) Adjustable Weir Full Open 33.26 35.01 35.68 35.76 100% 36.34 35.43 35.68 Weir #15 (Removable) Adjustable Weir Partially Open 33.26 35.13 35.80 35.88 36.34 75% n/a n/a Weir #15 (Removable) Adjustable Weir Partially Open 33.26 35.26 35.93 36.01 36.34 50% n/a n/a Weir #16 (Removable) Adjustable Weir Full Open 33.22 35.71 36.38 36.46 37.04 100% 36.13 36.38 Weir #16 (Removable) Adjustable Weir Partially Open 33.22 35.83 36.50 36.58 37.04 75% n/a n/a Weir #16 (Removable) Adjustable Weir Partially Open 33.22 35.96 36.63 36.71 37.04 50% n/a n/a Weir #17 (Removable) Adjustable Weir Full Open 33.19 36.41 37.08 37.16 37.74 100% 36.83 37.08 Weir #17 (Removable) Adjustable Weir Partially Open 33.19 36.53 37.20 37.28 37.74 75% n/a n/a Weir #17 (Removable) Adjustable Weir Partially Open 33.19 36.66 37.33 37.41 37.74 50% n/a n/a

37.78

37.90

38.03

38.48

38.60

38.73

39.18

39.30

39.43

39.88

40.00

40.13

37.86

37.98

38.11

38.56

38.68

38.81

39.26

39.38

39.51

39.96

40.08

40.21

38.44

38.44

38.44

39.14

39.14

39.14

39.84

39.84

39.84

40.54

40.54

40.54

100%

75%

50%

100%

75%

50%

100%

75%

50%

100%

75%

50%

37.53

n/a

n/a

38.23

n/a

n/a

38.93

n/a

n/a

39.63

n/a

n/a

Bottom Isolation Gate Full Open El.38.5 ft

Stoplog Down Top at El. 42.86 ft

Close isolation gate at spillway gate full open

37.78

n/a

n/a

38.48

n/a

n/a

39.18

n/a

n/a

39.88

n/a

n/a

Weir #18 (Removable) Adjustable Weir Full Open

Weir #19 (Removable) Adjustable Weir Full Open

Weir #20 (Removable) Adjustable Weir Full Open

Weir #21 (Removable) Adjustable Weir Full Open

Isolation Gate

Isolation Gate

Stoplog Guide

Exit Channel

Weir #18 (Removable) Adjustable Weir Partially Open

Weir #18 (Removable) Adjustable Weir Partially Open

Weir #19 (Removable) Adjustable Weir Partially Open

Weir #19 (Removable) Adjustable Weir Partially Open

Weir #20 (Removable) Adjustable Weir Partially Open

Weir #20 (Removable) Adjustable Weir Partially Open

Weir #21 (Removable) Adjustable Weir Partially Open

Weir #21 (Removable) Adjustable Weir Partially Open

33.15

33.15

33.15

33.11

33.11

33.11

33.07

33.07

33.07

33.04

33.04

33.04

32.93

32.93

32.86

32.62

37.11

37.23

37.36

37.81

37.93

38.06

38.51

38.63

38.76

39.21

39.33

39.46

FISHWAY BAFFURS
90% DESIGN
RESERVOIR DAM
194-6444
3114/19 Py. 50F5
TCC/TA

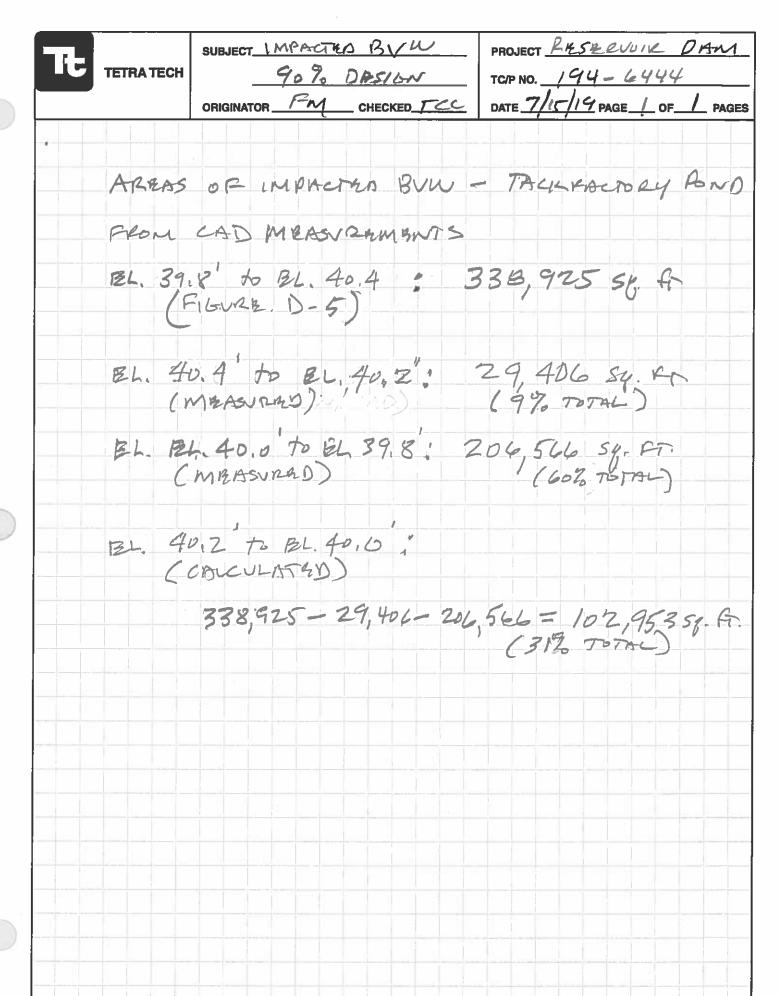
PROJECT RYSTRUCIA DAM SUBJECT QUANTITIES 90% DESIGN TC/P NO. 194-6444 **TETRA TECH** DATE 4/25/19 PAGE 1 OF 4 PAGES ORIGINATOR TCC CHECKED TA UPDATE 2017 60% DESIGN QUANTITIES CALCULATE ADDITIONAL QUANTITIES AND ADD TO 2017 QUANTITIES FISHWAY BXIT CHANNEL (15 LOWER) CONCRETA DEMONITION 36" 36" UOL = 1 x 3 x 6 x 2 x /2 = 1,3 cy. + 5 x1x6 x /27 = 111cy. + 2 x 1 x 3 x 2 x/27 = 0 4 cy 692 (40, +3 TNS 2 45 Eg. 2.8 cg. BXCAUATION: 1.5 × 401 × 15 w × 1/2 = 33.3 cy 432 (2017) + 35 cy = (635 cy) CONC. 24" 24"_ EL 46 917-813

PROJECT RESERVOIR OM SUBJECT QUANTITIES 90% DUSIGN TETRA TECH TC/P NO. 194 - 6444 DATE 4/25/19PAGE 2 OF 4 PAGES ORIGINATOR TCC CHECKED TA Vol. = 9'x2 x6 x/27 = 4cg. + 2 x13 x6 x2 x/2 = 3/cm PECALCULATE 2017 VOL. REBARIUSE RATIONOF ZOIH 124BAR/CONL REBAR USA RATIONOF CONTROLOGY

FIGHWAY: 0.4 TUS/Say = 0.08 TW/Cy.

PORMWORK: USE O. 4 TUS/Cy

4 × 15 × 6 1 = 360 FF


USE 2000 SE + 360 FF

(2017)

BACKEILL: 1,5 × 4 × 10 ×//27 = 2,7 Cy. FORMWORK: US 2 525 cg + 2.2 cg x 530 cy. PLATFORM STEBL! USIE PATIO OF LEUSTHS. 6 (2019 ANNAD) ×/TN = Q. 6 TN 10: (20:17) USB THE COUTNET ZTUSONAL (2017) GRATING-5 1x 6 x 7 = 60 f=2 USE 120 Fr2 +60 Fr2 = 180 Fr2 - 12019 HANDYALL 64 + (2 = 2+6) = 88 AT (2017)

PROJECT RYSHRUDIR DAM SUBJECT BUANTITIES TETRA TECH 90% DESIGN TC/P NO. 194-6444 ORIGINATOR TCC CHECKED TA DATE 4/25/19 PAGE 3 OF 4 PAGES CALE, FSI-WAY BY T CHANNEL CONC. Wars: L= 21 + 20 + 14 + 3 = 48 (2017) DW6. C-112 h=11.5 (2017 VOL. Z x2x11,5 x48x/=81.8cg. SLAB: L = 21 + 20'+14 + 3 = 59'
(2017) W = 3'+2-2'+1+1=91
VOL = 9' × 59' × 2' > 1 = 39,369 ADD 15 WALL HEIGHT GUR 2019 VOL. 2 x 2 x 1,5- x 48 x 1 = 10.6 cg. ADD 6 WAY LENGTH (Pg.Z) = 35cy 70 TAL CONG. VOL = 160.79 128BAR: 170 Cy-XOILTN - 17TNS ADD 2 REMOVABLE BAFFLES BEL LADDER : L = 65 COWG C-10 ALUNG TOP SPILLWAY WALL

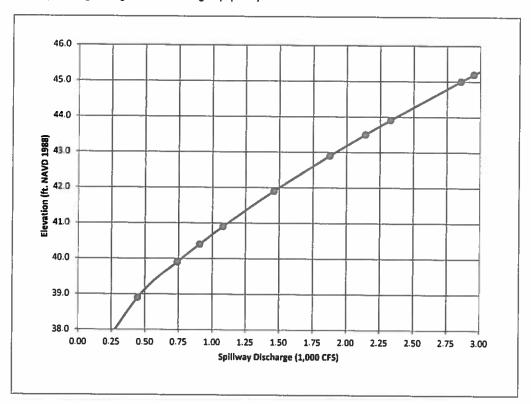
SUBJECT QUANTITIES PROJECT RASKRUDIA DAM 90% DESIAN **TETRA TECH** TC/P NO. 194-6444 DATE 4/25/19 PAGE 4 OF 4 PAGES ORIGINATOR TEC CHECKED TA SEPTIC SYSTEM UPGRADE ASSUME TREATMENT SYSTEM GOOK UP GRADIE LEBERT FLEW ON EXCAUATIE TOP ZXISTING PIRLD 40 × 60 × 2 × 1/27 = 180 cy. INFILTRATION CHAMBERS: 125 LF. 5 AND 4 x 60 x 30 x/27 = 710 cg. TOP SOIL: 60'xBOX1'x/27 = 20 cg. STEDING: 60" x80 x2 = 9600 SF. 2 1100 54 FLOOD PFROTZETION: FIII IN LOW ARRAS 3 PROPERTIES 1700 5011 = 3 × 1 × 100 × 100 × /29 = 11005 cy. SEED = 3 × 100 × 200 = 30,000 5 F. = 3,400 sy

60% Design Supporting Calculations

Alternative 8A - Spillway Replacement w/ Lower Crest at El. 36.4 ft

Spillway Rating Curve - Existing Crest with New Gate Crest (Ogee Discharge Coefficient) and additional Gated spillway

First Herring Brook - Reservoir Dam


	$Q = CLH^{3/2}$				Existing O	gee-shaped	Spillway Crest	
		NAVD 1988	3 Lower I	xisting Spil	way Crest	= El. 36.4 ft	36.4	4 ft
N	ew Crest El. =	36.4	ft					
	l	. 0	ft	L	36.5	ft per surve	ey minus 6" gate	e guides
	C	3.1		С	3.1			•
		Spillway			Dam			
	EL.	H (ft)	Q (cfs)	EL.	H (ft)	Q (cfs)	Total Q (cfs)	
	36.4	0	0				o Ó	
	38.9	2.50	0	38.9	2.50	447	447	
	39.9	3.50	0	39.9	3.50	741	741	
	40.4	4.00	0	40.4	4.00	905	905	
	40.9	4.50	0	40.9	4.50	1080	1080	
	41.9	5.50	0	41.9	5.50	1459	1459	
1/2 PMF	42.9	6.50	0	42.9	6.50	1875	1875	Use El. 42.0 ft as maximum water level
	43.5	7.10	0	43.5	7.10	2141	2141	to provide 0.5 ft freeboad with 2.5 ft wave
	43.905	7.51	0	43.905	7.51	2326	2326	for 50 mph wind; 0.2 ft freeboard with 2.8 ft
top of dam	45.0	8.60	0	45.0	8.60	2854	2854	wave for 100 mph wind.
	45.19	8.79	0	45.19	8.79	2951	2951	·
	46.75	10.35	0	46.75	10.35	3768	3768	
	46.83	10.43	0	46.83	10.43	3811	3811	
	47.00	10.60	0	47.00	10.60	3905	3905	
	47.25	10.85	0	47.25	10.85	4044	4044	
	48.00	11.60	0	48.00	11.60	4470	4470	
	49.00	12.60	0	49.00	12.60	5061	5061	

For 3 ft freeboard no wave action, need 36.5 ft long spillway crest at El. 34.5 ft Lower Spillway 4.4 ft

BXCHL SPREADSHEAT PULE: WEIR HEIGHTS, X/S

SPITIWAY DISCHARGE RATING CURUR
60% DESIGN
PROSE 194-5938
5/2/17 PAGE TOF 2
TCC, NM

Figure 8 - Reservoir Dam Spillway Discharge Rating Curve with Emergency Spillway

SPILLWAY DISCHAPER RATING CURVE 60% O'ESIGN

PRISERVOIR DAM

PRIJ. # 194-5938

5/2/17 PAGR 20F2

TCC; NM

																	2				Fishway not operable helow FI 36 46 ft					Close isolation eate at soillway gate full onen	Ton of gate at El 44 27 ft)		
		risnway spring (out-migration)	_		26.28	26.93	27.59	28.24	28.90	29.56	30.21	30.87	31.53	32.18	32.18	32.87	33.57	34.27	34.98	35.68	36.38	37.05	37.71	38.38	39.05	39.72			
		Frankay spring Minimum Pool I evel	(ft NAVD 88)		26.03	26.68	27.34	27.99	28.65	29.31	29.96	30.62	31.28	31.93	31.93	32.62	33.32	34.02	34.73	35.43	36.13	36.80	37.46	38.13	38.80	39.47			
	to described	Maximum Pool	Level (ft NAVD 88)		27.11	77.72	28.42	29.08	29.74	30.39	31.05	31.70	32.36	33.02	33.02	33.70	34.40	35.11	35.81	36.51	37.21	37.88	38.55	39.22	39.88	40.55			
	40.4	Minimum Pool Level	(ft NAVD 88)		26.03	27.02	27,67	28.33	28.99	29.64	30.30	30.95	31.61	32.27	32.27	32.95	33.65	34.36	35.06	35.76	36,46	37.30	37.97	38.63	39.30	39.97			
CATION	lata	Weir Crest El.	(ft NAVD 88)		26.28	26.93	27.59	28.25	28,90	29.56	30,21	30.87	31.53	32,18		32,87	33.57	34,27	34.98	35.68	36.38	37.05	37.72	38.38	39.05	39,72	44.22		
CONFICURATION	Proposed Fishway Weir Data	Notch El.	(ft NAVD 88)		25.61	26.27	26.92	27.58	28.23	28.89	29.55	30.20	30.86	31,52		32.20	32,90	33.61	34.31	35.01	35,71	36.38	37.05	37.72	38.38	39.05			
₹.	WEIR ELEVATIONS	Bottom	EL (ft NAVD 88)	23.90	24,11	24.77	25.42	26.08	26.73	27.39	28.05	28.70	29.36			30.70	31.40	32,11	32.81	33.51	34,21	34.97	34.93	34.90	34,86	34.83	34.72	34,66	34.51
	TABLE FOR DWG C-113 WEIR ELEVATIONS		Location	Entrance Pool	Weir #1 (Fixed)	Weir #2 (Fixed)	Weir #3 (Fixed)	Weir #4 (Fixed)	Weir #5 (Fixed)	Weir #6 (Fixed)	Weir #7 (Fixed)	Weir #8 (Fixed)	Weir #9 (Fixed)	Weir #10 (Fixed)	Centerline Turning Pool	Weir #11 (Fixed)	Weir #12 (Fixed)	Weir #13 (Fixed)	Weir #14 (Fixed)	Weir #15 (Fixed)	Weir #16 (Fixed)	Weir #17 (Removable)	Wetr #18 (Removable)	Weir #19 (Removable)	Weir #20 (Removable)	Weir #21 (Removable)	Isolation Gate	Stoplog Guide	Exit Channel

RESERVOIR OAM

POWE # 194-5938

5/2/17 PASE FOFE FISHURY WEIRS 60% ORSIBN

Fishway Weir Flow

C = average discharge coefficient

h1 = water level over notch (5 inches minimum; 29 inches maximum)

h2 = water level over weir = h1 - 8"

h3 = water level over baffle = h1 - 20"

L1 = notch width = 6"

PRESERVOIR DAMY
PRUS- 4-194-5938
5/2/117 PASA 20F2
TEC, NM

FISHWAY WEIRS 60% DESIGN

L2 = weir width = 18" - L1 = 12"

L3 = baffle width = 36" - L1 - L2 = 18"

Q (cfs) = C L H^A3/2 Qtotal = Q1 + Q2 + Q3 C = 3.1

(S)		maximum downstream	Use 0.6 cfs for average downstream passage flow	Minimum upstream passage flow top fixed weir		Target upstream passage flow			Maximum upstream passage flow				
Qtotal (cf	0.42	0.84		1.08	1.75	2.58	3.55	4.63	5.81	6.44	10.05	14.73	
Q3 (cfs)	•									0.00	0.89	2.53	
h3 (ft)										0	0.33	0.67	
Q2 (cfs)		0.00		0.07	0.39	0.83	1.38	2.01	2.72	3.10	4.77	6.67	
h2 (ft)		0		0.08	0.25	0.42	0.58	0.75	0.92	1.00	1.33	1.67	
Q1 (cfs)	0.42	0.84		1.01	1.36	1.75	2.17	2.61	3.09	3.34	4.38	5.52	
h1 (ft)	0.42	0.67		0.75	0.92	1.08	1.25	1.42	1.58	1.67	2.00	2.33	
h1 (inches)	S	œ		6	11	13	15	17	19	20	24	28	
	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft)	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.84 0 0.00 0.84	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.42 0.84 0 0.00 0.84	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.00 0.84 0 0.00 0.84 1.01 0.08 0.07 1.08	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.84 0 0.00 0.84 0.84 1.01 0.08 0.07 1.08 1.75	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.84 0.84 0.00 1.01 0.08 0.25 0.39 1.75 0.42 0.83 2.58	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.84 0.84 1.01 0.08 0.07 1.36 0.25 0.39 1.75 1.75 2.17 0.58 1.38 3.55	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.00 0.08 0.84 1.01 0.08 0.07 1.08 1.36 0.25 0.39 1.75 1.75 0.42 0.83 2.58 2.17 0.58 1.38 3.55 2.61 0.75 2.01 4.63	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.00 0.042 0.84 0 0.00 0.84 1.01 0.08 0.07 1.08 1.36 0.25 0.39 1.75 1.75 0.42 0.83 2.58 2.17 0.58 1.38 3.55 2.61 0.75 2.01 4.63 3.09 0.92 2.72 5.81	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.00 0.00 0.84 1.01 0.08 0.07 1.08 1.36 0.25 0.39 1.75 1.75 0.42 0.83 2.58 2.17 0.58 1.38 3.55 2.61 0.75 2.01 4.63 3.09 0.92 2.72 5.81 3.34 1.00 3.10 0.00 6.44	Q1 (cfs) h2 (ft) Q2 (cfs) h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.00 0.00 0.84 1.01 0.08 0.07 1.08 1.36 0.25 0.39 1.75 1.75 0.42 0.83 2.58 2.17 0.58 1.38 3.55 2.61 0.75 2.01 4.63 3.09 0.92 2.72 5.81 3.34 1.00 3.10 0 6.44 4.38 1.33 4.77 0.33 0.89 10.05	h3 (ft) Q3 (cfs) Qtotal (cfs) 0.42 0.84 1.08 1.75 2.58 3.55 4.63 0.33 0.89 10.05 0.67 2.53 14.73

SUBJECT SPILLWAY - 60% DIESKAPROJECT RESERVOIR DAM TETRA TECH STABILITY ANALSIS TOP NO. 194-5938

ORIGINATOR TICK CHECKED NM DATE 4/1/17 PAGE OF 7 PAGES PURPOSE: ANALYZE PROPUSED SPILLAY STASILITY WITH BOTTOM-IT WELD CREST GATE ASSUMPTIONS! 1) CREST @ EL. 36, 4/ PT (DWG. C-110) 2) GATE CONPIGORATION SHOW ON DWG C-110 3) TOO GATE FULL CLOSED @ 24, 40.45 4) MAX. FLOOD LEVEL (1/2 PMF) @ BL.4/3,069 (STA 1/2 PMF CALCULATION) IN POND. 5) CONCRATE ON SOIL CORPECTIONT OF FRICION = M = 0.50 SIZE PAGE Z 6) SUIL DENSITY I 1204/43 DRX METHODOLOGY! CHECK 2 ERITICAL CONDITIONS CONDITION 1 - CREST GATE FULL CLOSED! CONDUTION Z-/2 PMF PLOW ; GATE PULL OPEN

SPHINSON TOOK

194-238 6-24-14 17-2-01.7

ETL 1110-3-446 20 Rug 92

TABLE C-1

Friction Coefficient for Concrete Cast on Soil (reference 4)

Interface Hateriels	Friction Coefficient, f
Mass concrete on the following <u>Transferior</u>	
Clean sound rock	0.70
Clean gravel, gravel sand mixtures, coarse	0.70
sand	0.55 to 0.60
Clean fine to medium sand, silty medium	
to coarse sand, silty or clayey gravel	0.45 to 0.55
Clean fine sand, silty or clayey fine to	
medium sand	0.35 to 0.45
Fine sandy silt, nonplastic silt	0.30 to 0.35
Very stiff and hard residual or	
breconsoffneted cfel.	0.40 to 0.50
Medium stiff and stiff clay and silty clay	0.30 to 0.35

C-i.2. ______ of thrust block for downward directed thrust is =alculated by:

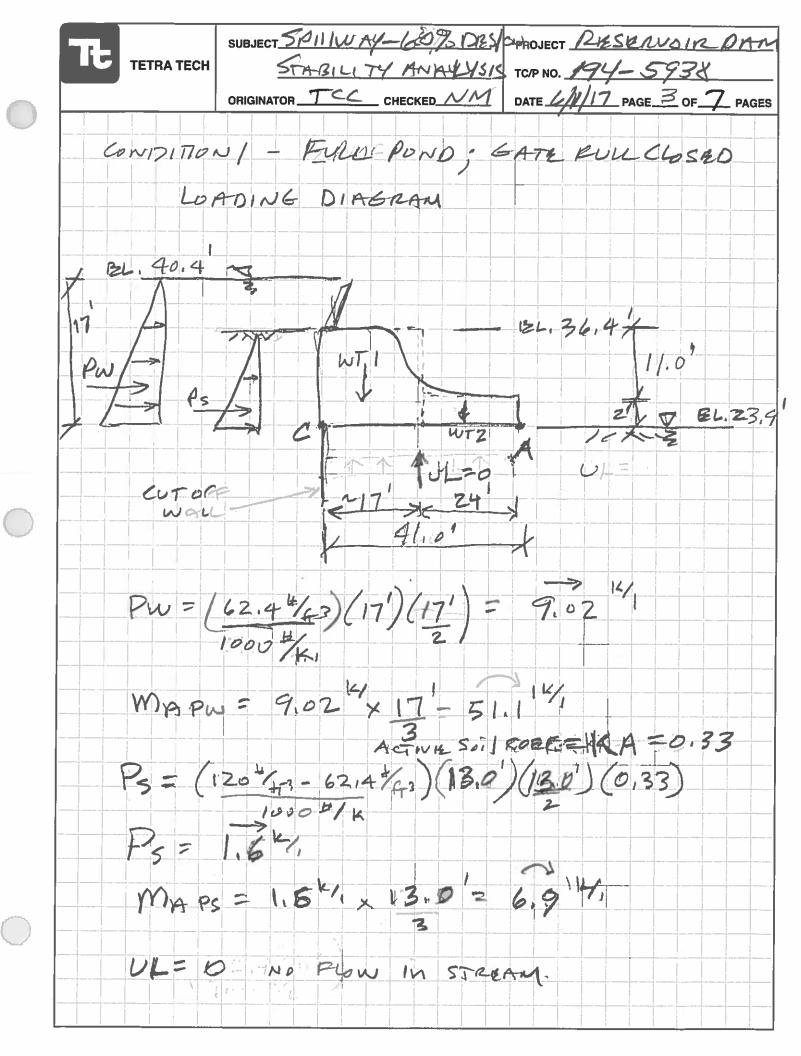
Am 5 FrTr/qr

Am = bottom area of thrust block,

 $T_T = vertical component of thrust force,$

gs = allowable bearing capacity of soil, and

Fr = Factor of Safety.


C-4.3. There is also a horizontal component of thrust $\{T_n\}$ in vertical bends. The sizing of thrust block for the horizontal component is calculated by the same $\frac{1}{2}$ used for horizontal bends, except the term T is replaced by $T_n=2PR$ Sin 0/2 Cos 0.

C-4.4. These are shown in Figures C-4, C-5, C-6 and C-7.

C--5. Restrained Joints. There are several approaches to this. They all https://doi.org/10.1001/joints. The length to be restrained may be determined by:

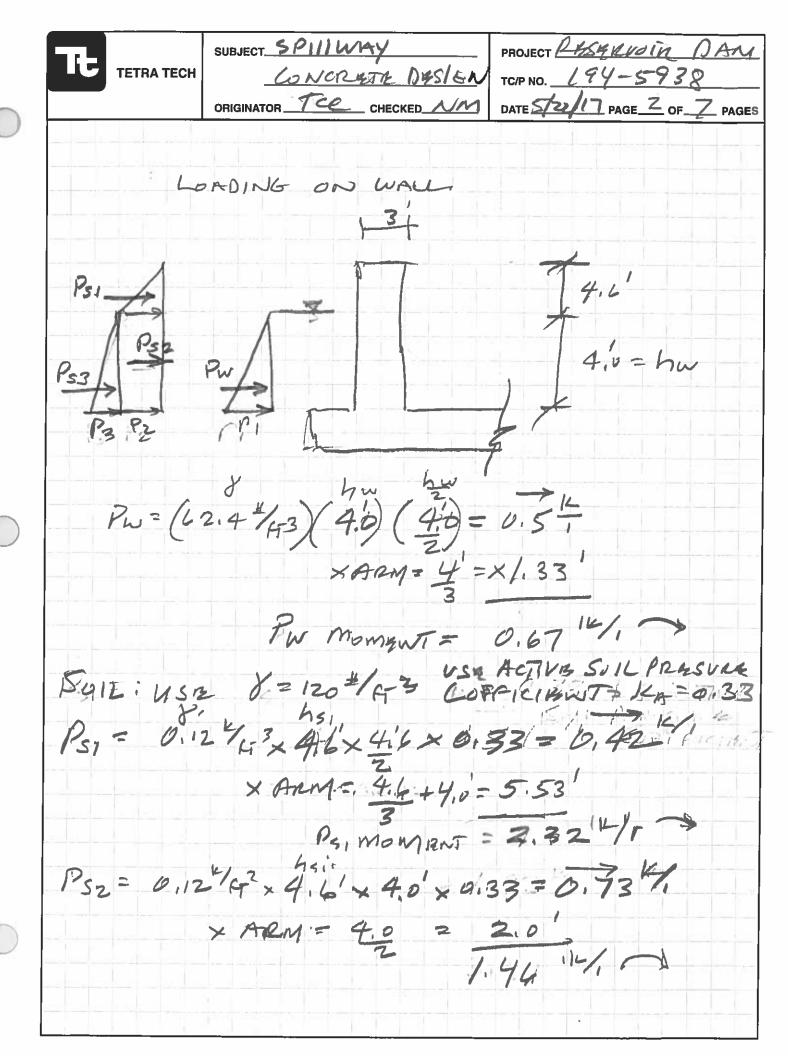
L S Fr(PA ten 2/2)/(Fr + 0.5 R (F Z Re D.)

where;

T	TE	ΓRA '	ГЕСН
		BASSE (1) AND 12 AND 12	

	SUBJECT SPINWAY-60% DESIGN	PROJECT RESERVOIR DAM
	STABILITY ANALYSIS	_
I	ODIGINATOR TCC CHECKED NM	/ /

	SUBJECT SPILLWAY-60% DESIGN PROJECT RESERVOIR DAM
TETRA TECH	STABIBITY ANALYSIS TC/PNO. 194-5938
	ORIGINATOR TCC CHECKED NM DATE 4/17 PAGE 5 OF 7 PAGES
	TON 2 - 1/2 PMF, CRAST GATE FULL OPEN. +SSUME TROLLWATER (-13) SAME DEPTH
	AS WATER OUZE CREST. AS LWATER (TW.) DEPTH = BL. 43.0'
	-al. 36.14'
	USE TW = BL3243,4 BUTTOM + 4.6 BC. 30,6
131.43.0	EL364
Pull	EL.30 4
	PL 23,4 WT2 PL REL 23,4 WT2 PL A
Pw=(62	2,4 tf=3) (19.6') (19.6') = 12.0 k/1
MAPW2	12.0 × 19.6 - 78.4 14,


SUBJECT SPILLWAY-60% DESIGN PROJECT RESERVOIN DAM TETRA TECH STABILITY ANALYSIS TOPNO. 194-5938 ORIGINATOR TEE CHECKED NM DATE LA 1/17 PAGE LO OF 7 PAGES Ka=0.33 Ps= (120-62,4 4/43) (13) (13) (0.83) Ps= 1.6 4/1 Mpps=1.6 4/1 x 13 = 7.0 14/1 UL = (62,4 = 47) (6.6) (17+24) = 16.8 ×11 MAUL= 16.8 41 x 41 = 344.5 41 EMO = MAPW + MADS + MAUL = 78.4 + 7.014, + 344,514, EMO = 429.9 114, EMR = 1123.2 1 SEZ PAGE A OVERTURNING FACTOR SAFRTY = EMIR Bovertunn = 1/23:21/1=216 STABLE SLIDING PACTOR SAFRTY EFR = (WTI +WZ - UL)M

= (31.947.2414.84)(0.5) = 11.24

ZPO PW. +PS

-T3-	SUBJECT SPILLWAY GOZ DESIGN PROJECT RESERVULLE DIAM
TETRA TECH	1C/P NO. 11 3/38
	ORIGINATOR TEE CHECKED MM DATE 6/1/7 PAGE 7 OF 7 PAGES
	NT 3 = (42,4 /+13) (17) (6,4)2 3.56
	EFR = 12.4 + 3.5 = 15,9K/1
SL	104NG EFR - 115 4 114 - 1, Z EFO 13464, STABLE
	CONSANUATIVA HIGHAR FACTUR SAPA

	SUBJECT SPILLWAY 1514WA	PROJECT RESURVAN DAM
TETRA TECH	CONCRETE DESIGN	
	ORIGINATOR TCC CHECKED NM	DATE 5/22/17 PAGE / OF 7 PAGES
PURPOSE:	SPILLRUMY CONCERTE	= 'D125/6~
ASSUMPTION	v< :	
	1) SPILLWAY CONFIGU DWG. C-110.	RATION SHOWN ON
	2) MAX. FLOOD (12 F WITH SPILLWAY	PMF) EL 4830 MAUD 88
	3) NORMOL POUL MAK	e. = BL. 40,4 NAU0 88
	4) WORST CASIZ GONG MAX. PUUL; NO 3	SPIKENTY PLOW.
REFERENCES	: 1) DESIGN HANDBOOK,	ACI SP-17(73)
MRTH2011	EV 1	
METHODOLOE	SY: to CONFIBURATIO	
1		45,000 t 3
EL,40.4 _	<u> </u>	
	5	PILIWAY CREST BL. 36.4PT.
1		
Try.	t = 2.0 w/ 4 CUVIE	2 d=24-4'=25"
reom r	REFERENCE 1, FLEXUR	- 6 S, 179.115
	W/4=20"; F=0,	400; F=MU
	B -12"	160

PROJECT RESERVOIR DAM SUBJECT SPIII WAY TC/P NO. 194-5938 CONCRATA DASIAN DATE 5/22/17 PAGE 3 OF 7 PAGES ORIGINATOR TC/ CHECKED WM PS3 = SUBMERSAD SOLL 85-120-22,4 #/13 85= 57.6 =/43 PS3 = (0.0576 43) (4:0) × 4.0 × 0.33 = 0.154/ *Ann = 4/2 = /133 PS3 MOMENT = 0.20 14, > MAY MONGNI = 6, 20 + 0. 67 4/ 412.32 4/ 1.46 1 HORIZONTAL FOREN = 0.5 K + 0.42 K + 0.73 + 0.15 K = 1.8 K AT BASK UF WALL CHRUL CONDITION WITH WATER BELOW SPIII way PS Dry = 0.12 4 2 × 8.6 × 8.6 × 0.33 = 1.46 1 × Apm = 8.4' = 2.87' PS DRY MOMBERT = 4.19 14/1

PSDRY C PSSUBMERGED; NOT CRITICAL,
WS2 MAY MOMENT = 4.651K/.

TETRA TECH SUBJECT SPILLWAY CONCRETE DISSISM ORIGINATOR TOR CHECKED NM DATE 5/22/17 PAGE 4 OF PAGE WU = MU (SRE PS.1) MU = applied Design Moments HU = 4,45 141 = 11/16
ORIGINATOR TO CHECKED NM DATE 5/22/17 PAGE 4 OF PAGE $KU = MU \left(S48 Pg.1 \right)$ $MU = applied Design $ $KU = 4,45 Pg.1 = 11/6$
$K_{U} = \frac{M_{U}}{F} \left(\text{Sur } Pg.1 \right)$ $K_{U} = \frac{M_{U}}{F} \left(\text{Sur } Pg.1 \right)$ $M_{U} = \frac{1}{4} \frac{1}{4} \frac{1}{5} \frac{1}{16} \frac{1}$
0 + 40.0
FROM PLEXURE 1, 2 (REPERMINE)
14/ 1/ 7/ E' = 1111 as
w/ ku < 7/- fc=4, wopsi
$f_y = 60,000psi,$
P £ 0.00.13
11. 0 200/C1 = 202 - 10022
USE PMIN = 200/fy = 200 = 0.0033
As= phd= 0.0033 x12" x 20"
= 0.79 in/Lis
FROM REPREDANCE REINGURERMENT 16
452 & 8 @ 12" O.C.
VERTICAL OUTSION WALL
FOR SHRINICAGE USE PO.0018 PER VOLUME
USE P = U,00112 = 19,000 UC PALL
USE P = 0.0018 = 0.00045 BACH WAY 12 ACH FAIR

SUBJECT SPILLWAY PROJECT RASPELLAN DAY **TETRA TECH** CONCRATE DESIGN TC/P NO. 194-5938 DATE 5/22/17PAGE 5 OF 7 PAGES ORIGINATOR TCC CHECKED WM WSE PSHRINKAG = 0,00045 x 20 x12" = 01108 in/FT. USR E4 @ 12" HORS/ VERS 24" 44e2000. #B@120.6-# 4012"0.C. GTY #10012"O.C. 0 1 # 4c12"

SUBJECT SPILLWAY PROJECT RESERVOIR DAM TETRA TECH TC/P NO. 194-5938 CONCRATA DASIEN DATE 5/22/17 PAGE ___ OF ___ PAGES ORIGINATOR TCC CHECKED VM CHARLE MOMBNIT IN ABNIBRATIOP SLAG 9 PW = 62,489,4 = 0.25 /072 4165-16 Mom CONTROL = -4.65 + 0.25 42 38 x 38 = -4.45 + 180.541. = 175.841 USE t = 2' F = 0.400 d=20" See py. 1 1Ku= 175.8 = 439.5 W/ 60,000 psi=fg; 400psi=fe

SUBJECT SPII WAY CUNCREST DESIGN

PROJECT RASERVOIR DAM TC/P NO. 194-5938 ORIGINATOR TEL CHECKED NM DATE 5/27/17 PAGE TOF T PAGES

D=0.0088 (PLMXUNE 1.2)

As = 0.0088 x 20" x 12"

As = 2.11 in / LF.

USIZ 3 SLAB; d= 36-4"= 32"

P= 102

KU= 175.8 1 = 172.4

P=0.0033 10,0033 MINI

As= p bd = 0-0033 x12 x32"

= 1.27 in3/v.

USZ. #100120.0,

SHRINKAGE USE @=0.0018 = 0.00045

Az = 0.00045 x 32"x 12" = 0.17 m / LC USE 4 4@12'00 As=01212

SUBJECT FIGHWAY - 60% DASIANDROJECT RESERVOIN DAM **TETRA TECH** STABILITY ANALYSIS TOP NO. 194-5938 ORIGINATOR TEC CHECKED NM DATE 6/2/17 PAGE 1 OF 5 PAGES PURPOSE: ANALYZE PROPOSED RISHWAY BXLT CHANNEL STABILITY ASSUMPTIONS! 1) BY IT CHANNEL CONFIGURATION PER DUG C-112 2) CRITICAL CASE - 12 PMF, ISOLATION GATE Closed, No Fishway Flow 3) MAX. 1/2 PMF LBUKK = BL. 43.0 fg. 4) CONCRUTE ON SOIL CORPFICIENT = 11=0.5 SEE PHEE 2 METHODOLOGY: 1) ANALYZE STRUCTURE AS WHOLE CROSS SECTION: 1 2 3 ×2/x 10,5 WI BL. 34.5' Jw2

FISHWAY-60% DRS/6N STABILITY ANALYSIS

B. JIHUSON TCOOK N.M

RESPRESSION OFFINA 194-4-38 6-24-14 M-2-045

ETL 1110-3-446 20 Aug 92

TABLE C-1

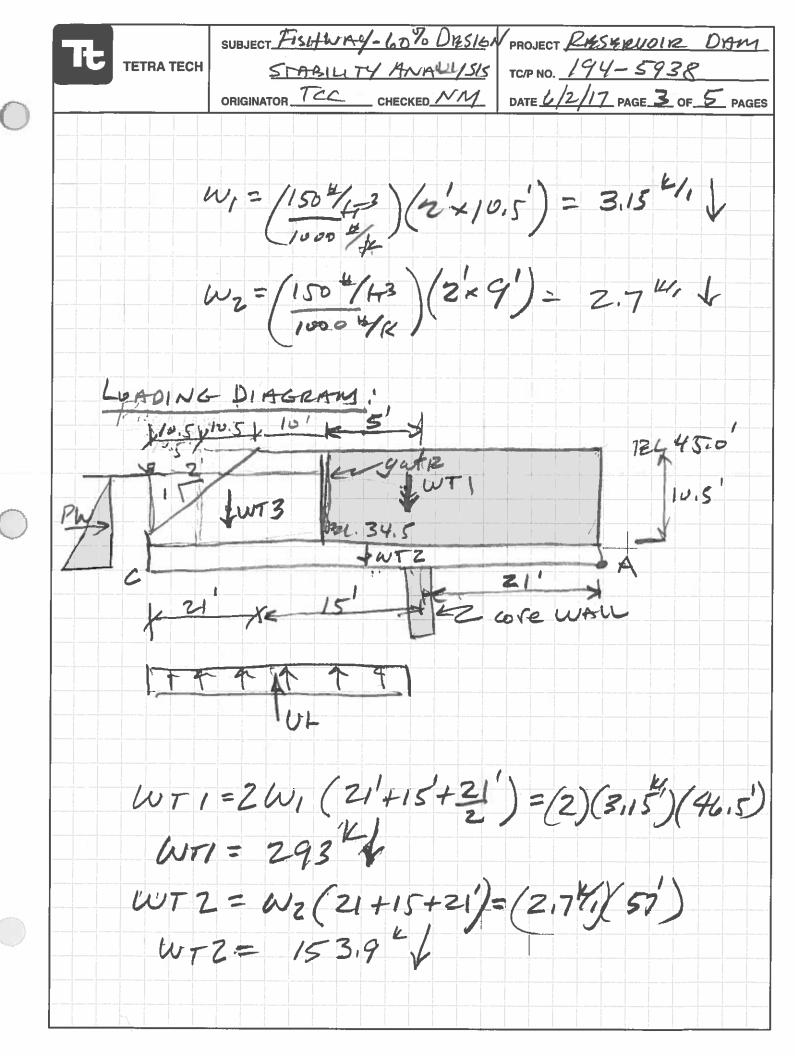
Friction Coefficient for Concrete Cast on Soil (reference 4)

Interface Materials	Friction Coefficient, f	
Mass concrete on the following Frankling or materials:		
Clean sound rock	0.70	
Clean gravel, gravel sand mixtures, coarse	•	
sand	0.55 to 0.60	
Clean fine to medium sand, silty medium		
to coarse sand, silty or clayey gravel	0.45 to 0.55	
Clean fine sand, silty or clayey fine to		
medium sand	0.35 to 0.45	
Fine sandy silt, nonplastic silt	0.30 to 0.35	
Very stiff and hard residual or		
preconsolidated clay	0.40 to 0.50	
Hedium stiff and stiff clay and silty clay	0.30 to 0.35	

C-4.2. $\frac{1}{2}$ of thrust block for downward directed thrust is calculated by:

Ath S FiTt/gr

Am = bottom area of thrust block, $T_T =$ vertical component of thrust force, q: " allowable bearing capacity of soil, and


Fr = Factor of Safety.

C-4.3. There is also a horizontal component of thrust $\{T_{ij}\}$ in vertical bends. The sizing of thrust block for the horizontal component is calculated by the same _____ used for horizontal bends, except the term T is replaced by Ta = 2PA Sin 0/2 Cos 0.

C-4.4. These are shown in Figures C-4, C-5, C-6 and C-7.

C--5. Restrained Joints. There are several approaches to this. They all releases the length of pipe to be restrained on both sides of the joint. The length to be restrained may be determined

L S Fr(PA tan 2/2)/(Fr + 0.5 R (= Z Ka Da)

TE TETRA TECH

SUBJECT PISHWAY- 1006 04516 WPROJECT RASKRUCIR NAM STABILITY ANAUSIS TOP NO. 194-5938 ORIGINATOR TCC CHECKED NM DATE 6/2/17 PAGE 4 OF 5 PAGES

WF3 = (62,4 4/43) (3+1+1) (31) = 9.7 1 MANN = 293 × 46,5 = 6,812.21 MAWTZ= 153.9 x 57 = 4,386,21 Mpw-3= 9,7" x(21+5+311)= 402.5 EMR= MANT (+MNW12+MAW1? EMR = 6,812,2+4386,2+402,5 Eune = 11,600,912 Pw=/62,4/43/12,5)(12,5)(9)=43,9K MAPW= 43.9" × 12.5 = 182.8 1K UL = (62.4 / 63)/12.5)(9')(36') = 252.7KT MAUL = 252.7 x (36+21) = 9855.3 14 EMO = MAPH + MAUL = 182.8+9855.31E

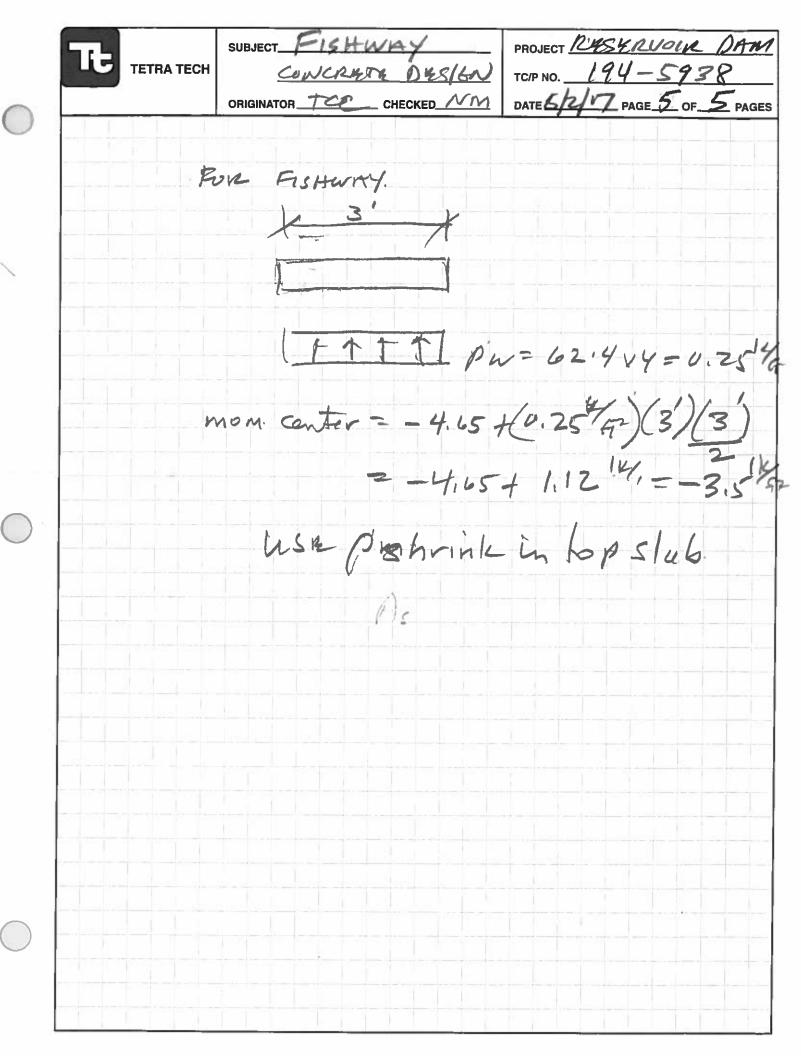
SUBJECT FISHWAY - 60% DESIGN PROJECT RESERVOIR DAM TETRA TECH STABILLTY ANKLYSIS TOP NO. 194-5938 ORIGINATOR TEC CHECKED NM DATE 6/2/17 PAGE 5 OF 5 PAGES ADD SOIL ON POOTING WT 4 = /120 1/43)(21/10.51)(571) W74= 143.6 KJ MANTH = 143.6 " × 57' = 4,093.7" 2MR = 11,600,91 +4,0937.71 EMR= 15,694,6 EMR = 15,694.6 | = 1,56 SAFRIY EMO 10,038,112 OURRIVENING STABLE CHECK SLIDING! SUT= UTI +UTZ + WT3 +WT4 = 293.6 + 153.9 × + 9.7 + 143.6 = 600.2 × EV= ENT-UL=600.2-252.7 = 347.5 K ZFR = EV x M = 347.5 x 0.5 = 173.84 EF3 = PW = 43.9 K

EFR = 173.8 = 4.0 FISHWAY STABLE.

EF3 43.9

TE TETRA TECH	SUBJECT TACK PAGIONY PUND FLUIDLANAS	PROJECT <u>PASKANOIR DAY</u> TC/P NO. <u>194-5938</u>
	ORIGINATOR TCC CHECKED NM	DATE 4/2/17 PAGE OF Z PAGE
PURPOSE	: APPROXIMATE WAS TACK PACTORY PO PRAK DISCHARGE	THE LEVEL IN NO AT 1/2 PMR
ASSVMPT	70NS;	
	1) 12 PMP = 1,800 C	2fs.
	2) FLOW THROUGH CU.	
	3) CJCH ACT AS A WELL WITH C =	BROKED CRESTED
	4) CROSS SECTION OF PER DWG C-101	2 CJCH (1818. DWG C-
CJCH Pro	FILE:	
BL. 44.2	SI EL.	t2.31 SZ EL44.
1	100 1 100 L1 Ln	2 X 200 X
3, =	400' = 0.204751	52=1.8=0,009"
WEIR BA	emula:	
7 =		
	41 + 42 + 6 m	

SUBJECT TACK PACTURY ROND PROJECT RASKROOIR DAW FWOD HEVELS TOPNO. 194-5938 ORIGINATOR TCC CHECKED NM DATE 6/2/17 PAGE 2 OF 2 PAGES L1= HxS, = (0.00475 XH) LZ: H x Sz = (0,009)(H) A35×m2 61 62 677 CR3. 1.5 316' 167' 342' 1,634 cf. 1.6 337 178 358 1,884 cFs 2.0 422 222 422' 3,103 CB 12 PMF FLOOD LAVEL IN TACK PACTORY POND AT BL 42,3+16 = 126.43,9 100 yr Plud at 12L. 44,01


	SUBJECT BSTIMATED WAVE	PROJECT RASBEVOIR DAN
TETRA TECH	SUBJECT BESTIMATED WAVE	TC/P NO. 194-5938
	ORIGINATOR TEL CHECKED VM	1 / /
Purpose	" DETERMINE WAVE RESERVOIR DAM	- HEIGHT AT
Assum P-	Flows:	
		COMPENT WITH & PME
	2) PRACH PRIC DWG	-C-103 42;200 ft
12xperen	UCE: 1) STANDARD HAN BNGINERRS, ME	PROUK FOR CIVIL
A-SSMD.	1) FETCH IS 2,200 F	T SCALED PROM
	2) Bomph wing acc	MAY, RESERVOIR
METHODO	2064,1	
	From 12QUATION 23-1 H = 0.0555 U F	1 MERRITT, 5-5-0.42 miles
50	0 2,9 pr	1.5 PT TOP WAUK

77.	SUBJECT FISHWAY	PROJECT RESERVOIR DAM
TETRA TECH	CONCRETE DESIGN	TC/P NO. 194-5938
	ORIGINATOR TCC CHECKED NM	DATE 6/2/17 PAGE 1 OF 5 PAGES
PURPOSE	: FISHWAY CONCRE	
ASSVMPTO	NS!	
	1) FISHWAY CONFIGU DWG C-112	PATON SITONNON
	2) MAY FLOOD (1/2 WITH NO FISHWA	PMP) BL. 43.65 NAVOS
	3) WORST CASE IS FISHWAY PLOU	MAX FLOUR NO
REPERANCE		
	1) DESIEN HAND BOOK	., ACI SP-17(73)
METHODO BL 43.0	xtx3'xt	ATON L.45.0'
		_134.5

PROJECT RESERVEIR DAM SUBJECT FISHWAY TETRA TECH TC/P NO. 194-5938 GONCRUTE DESIGN DATE 6/22/17 PAGE 2 OF 5 PAGES ORIGINATOR TOL CHECKED WM Try t = 24" w/4 corne d = 20" FROM REFERENCE 1, P/BXNRE 5, Pg. 115 W/20"=d b=12" P= 0.400 ARM Pw= 62.4 / x8.5 x 8.5 = 2.25 1 × 8,5=2,83 PSy:= 0.120/47 × 2 × 2 × 0.33 = 0.084 × 8,5 × 3 = 5,67

-T-L	SUBJECT FISHWAY	PROJECT RASKAVOIN DAY
TETRA TECH	CONCRETE DESIGN	TC/P NO. 194-5938
	ORIGINATOR TEE CHECKED WM	DATE 6/2/17 PAGE 3 OF 5 PAGES
PSZ=	0.12 × 2 × 8.5 × 0.3	3=0.67
	× 8	7.5 p 4.25
		= 2.85 14.
		= 2.85
P53=	SUBMERGE SOIL &	1=120-62.4 (K3
		V 4/-
	4	8 = 57.6 /A3
P2 = 10	5.576 HA) (8.5) (8.5)	5/022 - 10-4
	13/2 11/(8/3/(4/3)	3)(0,00)+6,019
	0 51	
	Ann = 8.5 V=	2.83
	1/4-	14NT = 19.46 14,
mo my	MMMY = 6138 7	
	141	
	11/mgx= 6138 7	19.73 +2.85+19.46
	Mmm= 29,14	14
1-1		16
KU	= MU = 29,14	= 72.9
	F 0,40	
Frens	FLEXURE 1,2 (REA	21210 = 10= 1
16	U/KU = 729 P=	0.0013
	Pmin = 200/fy =	60Ksi.

SUBJECT FISH WAY PROJECT RESURVOIR DAM TETRA TECH CONCRETE DASIEN TC/P NO. 194-5938 DATE 6/2/17 PAGE 4 OF 5 PAGES ORIGINATOR TCL CHECKED NM As my = 0.0033 x 12 x 20" = 0,79/m/LA use # 8012"0. C. PUR SITRINKAGE USE P=0,0018 Pshrinkuge = 0,00045 USE # 4@ 12'O.C. HORZ S/ VERT 0:00045 x 12'x20 = 0.108 h BOTH \$1085 REQ'D 0:2014 ProvideD #4012'0,c 128@12"°C. #8en-4401200

TETRA TECH		PROJECT RESERVOIR DAM TC/P NO. 194-5938 DATE 5/24/17 PAGE 1 OF 4 PAGES
PURPOSE:	SPILLWAY BRIDGE : DESIGN (PRE	STRUCTURAL STREL
ASSUMPTIO	NS;	
REPERENC	6) USB 36 KSL 2f	H/FT LIVELOAD COOR 1.7. UNIGHTHUY DISTRIBUTE Y 5:5 TRUCTURAL STERL
METHODOLO	21 R.	10N (2 13BAMS) W= 200 F-x3 = 600 4/LA P= Wf-600 438 12 = 11.4 kips

SUBJECT SPILLWAY BRIDER STRUCTURAL STEAL TOPNO. 194-5938

ORIGINATOR TEL CHECKED NW DATE STERIF PAGE 2 OF 4 PAGES

PROJECT RESERVALD DAM

Moment of center = with

M may = (600) 38)2

= 108.31K8

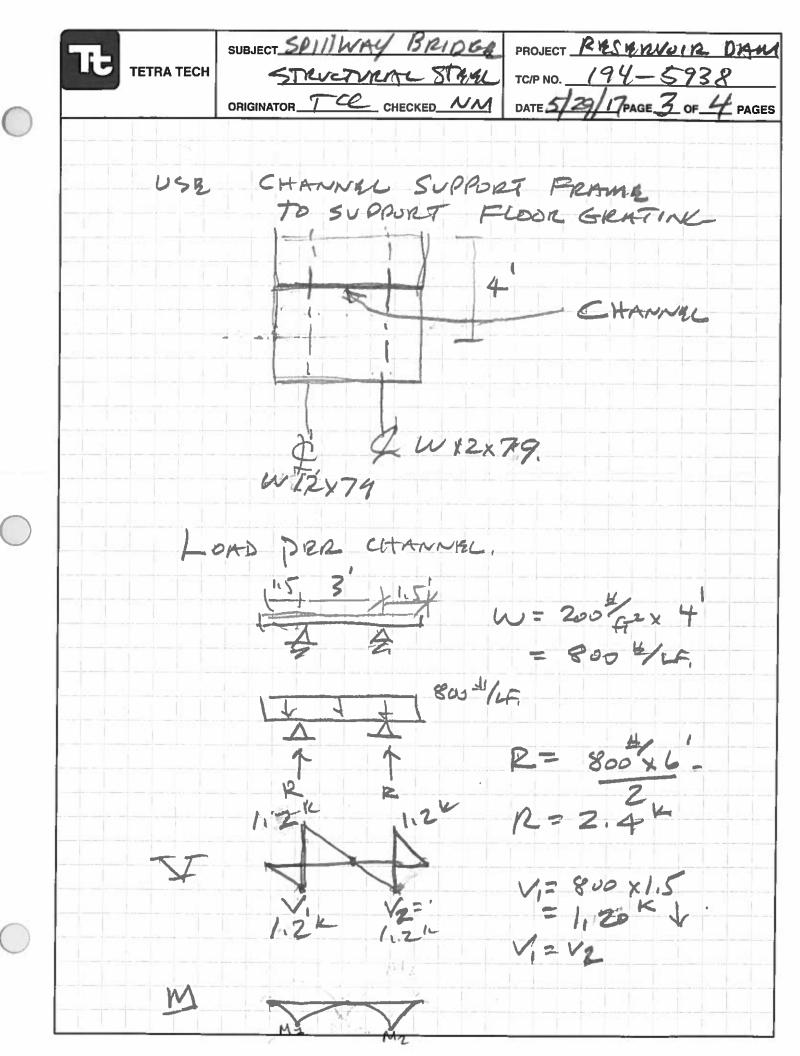
MU= 108.3 x1.7=184,1

AMAY @ CHNTER= 5W P4

384 B I

E= 29,000 KSL

F6 = 0.40 F3 458 Fy = 36 KSL


Fb = 21.6 KSC.

fb = m = 184.1 x12"

 $S_{mm} = \frac{184.1 \times 12^{11/2}}{21.6 \times 10^{2}} = 102.3 \text{ in}^{3}$

W12 x79: 5= 107in In= 663in4 DMAX - (5) (0.6%) (384) (13-8 ×124) = 1.46 1

(384) (29,000 Ksi) (663in4)

TETRA TECH	STRUCTURAL STARL	PROJECT <u>RYSKAVOIR</u> DAM TC/P NO. 194-5938
	ORIGINATOR TCC CHECKED NM	DATE 5/29/17 AGE OF 2 PAGES
PURPOSE	FISHWAY BRIDGE S DESIGN GREU	TRUCTURAL STREL
ASSUMPTIO	NS:	
	1) CLEAR SPAN 3.0	
	2) WIOTH = 6.0'	
	3) LOADING 200 4	152 LIVE DONO
	4) 5 IMPLE BRAM DISTALIBUTED	UNIFORMUY
	5) LIVE LOAD PAC	
12rfarapie	ELIMANUALOF STIZED	I CONSTRUCTOR,
METHODOL	OGY: CONFIGURATIO	N (Z END BEAMS)
	$\omega =$	200/ K2 x3 = 600/LF.
	3'	12= 600 41 x 3'
	k 15	12=600 1 × 3 1 2 1 K = 900 × 1000 # = 0.9 K
	Mcenter = w1 Mc=1,011x8	2 =0.900 × (3)2
	mc= 1.01 1 x. 8	8
	MV=117×1101	= 1.72

SUBJECT FISHWAY BURGING SUPPORT FRAME

PROJECT RESERVOIR DAM TC/P NO. 194-5938

ORIGINATOR CHECKED VM

DATE 5/24/17 PAGE OF PAGES

PURPOSE: PREMINARY DESIGN OF REMOVABLE PISHWAY WEIR MOTOR HOIST STARL PRAME SUPPORT

ASSVMP, TONS:

- 1) USE DUAL SCREW STIEMS BUITH SHP mutor (WT. = 100 = max.)
- 2) BACH RAMOVABLE WEIR HAS OPERATOR.
- 3) OPERATOR WITH DOUBLE STEM TO KREP CONTER NOTEH CLEAR OF OBSTRUCTIONS.

KARERHNERS'

- 1) MANUAL STEEL GNSTAU CRUN, ALSC
- 2) DWG C-LPZ

MRTHODOLOGY:

CONFIGURATION FISHWAY EXIT CHANNEL BITTOM BL. 34.51 TOP WELL #21 BL 39.9

HMAX. WEIR HEIGHT = 39,7-34,5=5.2

PROJECT RYSKAUOIR NAM SUBJECT PISHWAY BY EAR. **TETRA TECH** SUPPORT FRAME TC/P NO. _ 194-5938 DATE 5/29/17 PAGE 2 OF 4 PAGES ORIGINATOR TCC CHECKED NM MAX. PODL OPERATING LEVEL BL. 40.6 TUP OF WALL @ BL. 45.8' BL-45.8- BL. 40.6 = 5.2 WELR IN FULL UP POSITION AT TOP OR WALL Truston SHAFT of 90° DRIVE top WALL RL. 45.8 TOP WEIR FULL DOWN
181. 39.7' 5.2 PL. 34.5 SUPPORT BEAM motor SUPPURT LOLUMN

SUBJECT FISHWAY WEIL PROJECT RESERVOUR DAW

SUPRIT FRAME TOP NO. 194-5938

ORIGINATOR TEE CHECKED NM DATE 5/29/17 PAGE 4 OF 4 PAGES

MU = 0.751 x 1.7 Load Suter = 1235k R = 1/2 = 1.500 = 0.75 K FB = 21.6 Ksi & 1- 36 Ksi steel.

5 = 1.3 1 × 12", = 0.72 in 3 21.64/13

USE W6 x 15.5 5xx = 10.0 143 A = 4.56 in2

AXIAL GAD FC=0.75 FZ

= 0.75 × 36 KSi

= 27 Ksi

A = P = 6.75 K = 0.03 in 3 Fe 27 Ksi USE W16 × 15.5 VETTURE

As= 4.56 in