APPENDIX B PROPOSED SPILLWAY DESIGN

February 29, 2018

TECHNICAL MEMORANDUM

SUBJECT:	DEIR Appendix B - Proposed Spillway Design Reservoir Dam – NID# MA 000478 Reservoir Dam Water Storage and Fish Passage Improvement Project
FROM:	Mr. Thomas C. Cook, PE, Project Manager, Tetra Tech, Inc. (Tetra Tech)
CC:	Mr. Dan Smith, Engineering Department, Scituate DPW Mr. Sean McCarthy, Supervisor, Engineering Department, Scituate DPW Mr. Sean Anderson, Supervisor Water Division, Scituate DPW
To:	Scituate Department of Public Works (DPW) Mr. Kevin, Cafferty, Director Scituate DPW

INTRODUCTION

The Certificate of the Secretary of Executive Office of Energy and Environmental Affairs (EOEEA #15711) for the Reservoir Dam Water Storage and Fish Passage Improvement Project (EOEEA 2017) includes a comment letter by the Department of Conservation and Recreation (DCR) Office of Dam Safety (ODS). The ODS requires a Dam Safety Chapter 253 permit for the Reservoir Dam Water Storage and Fish Passage Project and the project final design will have a spillway in compliant with the Spillway Design Flood (SDF) requirements of the dam safety regulations. This Technical Memorandum updates the Spillway Design Flood Analysis prepared in 2017 and presented in the 60 Percent Design and Permitting Final Report (Tetra Tech 2017) and provides the hydrologic and hydraulic analysis and design data for the project spillway. The 90 percent design drawings are provided in the Draft Environmental Report (DEIR) Appendix G.

Tetra Tech held an initial meeting with ODS on July 12, 2018 to discuss their comments provided with the EOEEA #15771 Certificate and obtain input for the final hydraulic modeling. The original U.S. Army Corp of Engineers' (USACE) Hydrologic Engineering Center (HEC) hydrologic modeling software (HMS) results were summarized and included in the Environmental Notification Form which was submitted to ODS for review. The original HEC-HMS model has been updated to incorporate the Hydrometeorological Report (HMR) No. 51 and No. 52 rainfall distribution for the project spillway design flood (SDF) equal to the one-half Probable Maximum Flood (1/2 PMF)] and analysis of potential dam failure scenarios to determine the extent of downstream flooding.

Additional meetings will be held with ODS to review the spillway design and the hydrologic and hydraulic computations summarized in this Technical Memorandum after submittal of the DEIR. Final constructions drawings and specifications will be finalized in a future phase of the project to incorporate final permit conditions and will be transmitted to ODS as the last step in the Dam Safety Permit process. All ODS permit submittals will meet the requirements of 302 CMR 10 regulations and two sets of each submittal have been transmitted to ODS.

2017 PROJECT DESIGN FLOOD ANALYSIS

The sixty-percent design and permitting phase of the Reservoir Dam Water Storage and Fish Passage Improvement Project was completed in 2017 and included a Project Design Flood Analysis requested by ODS. The analysis updated the Spillway Design Flood (SDF) evaluation for Reservoir Dam and Old Oaken Bucket Pond Dam, both located in Scituate, Massachusetts. The analysis reflected current development that occurred in the Scituate Reservoir and Tack Factory Pond watershed tributary areas and utilized a HEC-HMS model to analyze the SDF for Reservoir Dam and Tack Factory Pond, which is the one-half Probable Maximum Flood (1/2 PMF).

The results of the Spillway Design Flood Analysis are summarized in Appendix D of the Sixty-Percent Design and Initial Permitting Final Report (Tetra Tech 2017). The Technical Memorandum was prepared to fulfill the ODS engineering requests from prior dam safety inspections and describe the proposed spillway modifications associated with the Reservoir Dam Water Storage and Fish Passage Improvement Project. The 2017 memorandum:

- Described the existing Reservoir Dam spillway design parameters;
- Determined the ¹/₂ PMF of the existing Reservoir Dam spillway design using HEC-HMS;
- Validated the HEC-HMS model parameters with a representative historic storm.
- Evaluated the existing spillway with the 1/2 PMF storm,
- Identified spillway modifications to increase capacity for ½ PMF with adequate freeboard on the results.
- Evaluated reservoir levels and spillway discharges with the proposed modifications for the ½ PMF, 100-year, and 50-year flood events; and,
- Recommended additional hydrologic and hydraulic analysis of Reservoir Dam and Old Oaken Bucket for the next ODS inspection report.

This Proposed Spillway Design Memorandum addresses the following recommendations provided in the 2017 Spillway Design Flood Analysis Technical Memorandum:

- Coordination with ODS to obtain approval of the SDF and proposed spillway modifications.
- Update of the HEC-HMS model to a multiple dam analysis incorporating Old Oaken Bucket Pond Dam. Since Old Oaken Bucket Pond is immediately downstream of

Reservoir Dam, Old Oaken Bucket has the same high hazard classification as Reservoir Dam.

- Update of the HEC-HMS model to include Chief Justice Cushing Highway (CJCH) as a control point with Tack Factory Pond and the watershed west of CJCH treated as a subbasin to the Reservoir Dam impoundment. This change defines flood levels in Tack Factory Pond which are known to be slightly higher than Reservoir Dam impoundment water levels.
- Conduct a multiple dam failure analyses for "sunny day" and ½ PMF initial conditions to verify the results presented in the 2017 Spillway Design Flood Analysis which indicated that peak flood levels with multiple dam failure were 1.9 ft. higher at Country Way and 0.5 ft. higher at Driftway Road than the peak flood levels with single dam failure.
- Incorporate the analysis results and a new inundation map into the Town's Emergency Action Plan (EAP) for the dams.

The results of the updated hydrologic and hydraulic as presented in the Technical Memorandum are the basis of the 90 percent design of the project features.

PROJECT FEATURES

TACK FACTORY POND

Tack Factory Pond Dam is located west of the Reservoir Dam impoundment and Chief Justice Cushing Highway (CJCH). First Herring Brook has a 4.5 ft high by 10.5 ft wide concrete box that is 75 ft long crossing CJCH. The invert of the culvert outlet into Reservoir Dam invert is at El. 32.8 ft North American Vertical Datum 1988 (NAVD88). All elevations in this Technical Memorandum refer to NAVD88.

Tack Factory Pond Dam is an earthen embankment with a concrete outlet structure located upstream of the First Herring Brook culvert under CJCH. The dam is an earthen embankment less than 5 ft high and approximately 250 ft long extending from CJCH on the left abutment (looking downstream) to natural ground on the right abutment. The embankment top is at El. 41.0 ft. First Herring Brook passes through a 5.25 ft high by 9.5 ft wide concrete box culvert approximately 13.25 ft long in the dam. The invert of the box culvert is at El. 34.6 ft with crown at El. 39.8 ft and top at El. 40.7 ft.

A concrete weir structure is located 6.75 ft upstream of dam and box culvert. The weir structure is approximately 18 ft wide with two 4.3 ft wide by 3 ft high slide gates. The slide gates have double operator stems for manual opening. The top of the weir and gates are at El. 39.3 ft. The gates are typically closed to retain storage in Tack Factory Pond for emergency water supply during droughts. Concrete side walls transition between the weir and culvert through the dam. The discharge rating data for the Tack Factory Pond weir with Reservoir Dam water levels lower than El. 39.3 is shown in Table C-1. The weir, embankment, and CJCH control Tack Factory

Pond water levels when Reservoir Dam levels are lower than the top of the Tack Factory Pond gate and weir. The CJCH roadway is overtopped at 1,800 cfs flow in First Herring Brook.

Tack Factory Pond Level (ft. NAVD88)	Weir Discharge (cfs)
39.3	0
40.0	30
40.7	86
41.0	139
41.5	441
42.0	1,143
42.3	1,803
43.0	4,166
43.3	5,574

Table C-1. Tack Factory Pond Discharge Data (Reservoir Dam Water Levels Below El. 39.3 ft)

Tack Factory Pond water levels are controlled by the CJCH culvert at Reservoir Dam water levels higher than the Tack Factory Pond weir. Table C-2 presents the discharge rating curve for CJCH with the Reservoir Dam proposed water level at El. 40.4 ft. The CJCH roadway is overtopped at 311 cfs.

Table C-2. Tack Factory Pond Discharge Data (Reservoir Dam Water Level at El. 40.4 ft)

Tack Factory Pond Level (ft. NAVD88)	CJCH Discharge (cfs)
40.4	0
40.5	71
41.0	175
42.0	283
42.3	311
43.0	687
43.5	1,398
44.0	2,578
44.5	4,303
45.0	6,639

The storage rating curve data for Tack Factory Pond are presented in Table C-3. The storage volumes are based on area measurements of the topographic contours obtained from MassGIS Lidar data for elevations above El. 40.0 ft and original design documents for lower elevations. Tack Factory Pond has 36.4 ac-ft. of useable storage between the existing normal pool (El. 39.3

ft. NAVD88) and the low level at which the current streamflow guidelines are discontinued (El. 30.9 ft. NAVD88). Tack Factory Pond has slide gates that are normally closed and maintain the water level at El. 39.3 ft NAVD88. Opening the gates provides an additional 5.6 ac-ft of useable storage between El. 39.3 ft and El. 38.9 ft NAVD88 water levels in Tack Factory Pond.

Tack Factory Pond Level (ft. NAVD88)	Total Storage (Ac-ft.)
33.1	0.0
34.1	0.3
34.6	1.0
35.1	2.3
35.6	4.4
36.1	7.9
38.3	26.2
38.9	30.8
39.3	36.4
40.0	46.2
42.0	96.5
44.0	162.9
46.0	255.4
48.0	387.7

Table C-3. Tack Factory Pond Storage Data

Reservoir Dam

Reservoir Dam is categorized as a High Hazard Potential dam in accordance with both Massachusetts General Law c.253, Section 46 and 301 Code of Massachusetts Regulations (CMR) 10.00. This classification applies to dam locations where failure will likely cause loss of life and serious damage to homes, businesses, public utilities, or highways. CMR 10.06 requires spillways for High Hazard Potential dams to have a discharge capacity at least equal to the One-half Probable Maximum Flood (½ PMF). Modifications to a High Hazard Potential dam, including the spillway and fishway, similarly must conform to the dam safety regulations, and must be approved by the Department of Conservation and Recreation (DCR) Office of Dam Safety (ODS).

Reservoir Dam is an earthen embankment with an ogee-shaped concrete spillway, a low-level outlet, and a pool and weir fishway. The low-level outlet is a 12-inch diameter pipe through the dam with an inlet structure at the bottom of the reservoir and a flow control valve on the downstream side of the dam. The low-level outlet flow control valve has an electric motor and is operated through a supervisory control and data acquisition (SCADA) system. The fishway has 21 weirs approximately 3 feet (ft.) wide creating pools that are approximately 3.5 ft. long.

The existing spillway has a 37.5 ft. minimum length with the crest at El. 38.9 ft. NAVD88 based the topographic survey conducted by Cavanaro Consulting in 2014. The discharge rating curve data for the surveyed spillway from the 2014 Preliminary Design Memorandum for the Reservoir Dam Fish Passage Project is presented in Table C-4. The rating curve is based on a conservative discharge coefficient value of 3.1, selected from Figure 249 in the Design of Small Dams (USDOI, 1973), over the entire range of flow for an ogee spillway. The existing spillway has a total discharge capacity of 1,751 cubic feet per second (cfs) at the top of dam El. 45.0 ft. NAVD88.

Reservoir Level (ft. NAVD88)	Spillway Discharge (cfs)
38.9	0
39.9	116
40.9	329
41.9	604
42.9	930
43.9	1,300
45.0	1,751
45.4	2,306
46.8	5,814
47.0	6,357

Table C-4. Reservoir Dam Existing Spillway Discharge Data

The storage rating curve data for the Reservoir Dam are presented in Table C-5. The storage volumes are based on data on area measurements of the topographic contours obtained from MassGIS Lidar data for elevations above El. 40.0 ft and original design documents in the 2014 Preliminary Design Memorandum for lower water elevations below El. 39.0 ft. The Reservoir Dam impoundment has 476.6 ac-ft. of useable storage between the existing normal pool (El. 38.9 ft. NAVD88) and the low level at which the current streamflow guidelines are discontinued (El. 30.9 ft. NAVD88).

Table C-5.	Reservoir Dam	Storage Data
------------	---------------	--------------

Reservoir Level (ft. NAVD88)	Total Storage (Ac-ft.)	Reservoir Level (ft. NAVD88)	Total Storage (Ac-ft.)
25.9	0.0	38.9	476.6
28.9	4.5	40.0	549.3
30.9	54.5	42.0	700.9
32.9	134.3	44.0	872.8
34.9	231.9	46.0	1,071.5
36.9	348.6	48.0	1,286.2

OLD OAKEN BUCKET POND

Old Oaken Bucket Pond is the raw water supply for Scituate's water filtration plant located approximately 550 ft northwest of the intersection of Country Way and CJCH. Country Way is the dam. First Herring Brook connects the Reservoir Dam spillway to the north end of the Old Oaken Bucket Pond. Old Oaken Bucket is located dam is approximately 3,500 ft downstream from Reservoir Dam. Water Supply Well #17A is pumped to Old Oaken Bucket Pond through a transmission line as needed to meet demand.

The dam is an earthen embankment approximately 370 ft long and 35 ft wide. The low point in the road surface is El. 21.4 ft. NAVD88 (DPW 2013). The streambed at the toe of the dam is at El. 12.5 ft. NAVD88. The outlet structures include:

- a 2 ft wide concrete pool and weir fishway with exit channel bottom at El. 18.6 ft. NAVD88;
- a primary concrete overflow spillway with two broad crested weirs having a total length of 23 ft and crest at El. 18.8 ft NAVD88;
- a 10 ft. wide auxiliary concrete ogee-shaped spillway with a crest at El. 18.6 ft.;
- a 3 ft. wide concrete sluiceway with a manually operated aluminum low flow control gate; and,
- a concrete sluiceway with a manually operated gate to control flow to the Stockbridge Historic Grist Mill located east of the spillway.

A portion of the upstream face of the dam has stone rip-rap and the downstream face is partially developed and vegetated with grass and trees (DPW 2013).

Twin 36 ft. long stone arch culverts are located under Country Way downstream of the spillways. Each culvert is 5 ft. wide by 8 ft. high. A single 14 ft. wide by 8 ft. high concrete culvert extended the stone arch culverts by 54 ft. when Country Way was widened in 2000-2001.

The discharge rating data for Old Oaken Bucket Pond spillway and dam embankment are provided in Table C-6. The Old Oaken Bucket fixed crest spillways can pass 280 cfs with the Pond water level at 21.4 ft. At higher flows, the Country Way culverts and roadway restrict flow and submerge the spillways.

The storage rating curve data for the Old Oaken Bucket Pond are presented in Table C-7. The storage volumes are based on area measurements of the topographic contours obtained from MassGIS Lidar data for elevations above El. 18.6 ft and original design documents for lower water elevations. Old Oaken Bucket has no useable storage because water levels have to be held at spillway crest (El. 18.6 ft) to provide adequate submergence on the water treatment plant pumps.

Pond Level (ft. NAVD88)	Spillway Discharge (cfs)
18.6	0
19.4	43
20.4	144
21.4	280
21.8	654
22.3	1,287
22.8	2,102
22.9	2.284
23.9	4,388
24.9	6,945

Table C-6. Old Oaken Bucket Pond Spillway and Country Way Discharge Data

Table C-7. Old Oaken Bucket Pond Storage Capacity Data

Reservoir Level (ft. NAVD88)	Total Storage (Ac-ft.)
11.9	0.0
13.9	1.0
14.9	2.3
15.9	6.6
16.9	13.0
18.9	29.1
19.5	49.6
21.0	111.9
22.0	159.8
24.0	276.3
26.0	409.4

METHODOLOGY

The USACE's HEC-HMS was used to determine the probable maximum flood (PMF) for the First Herring Brook watershed at Tack Factory Pond, Reservoir Dam, and Old Oaken Bucket Pond. The software simulates the rainfall-runoff process resulting from Probable Maximum Precipitation (PMP) on the First Herring Brook watershed. The following describes the methodology behind selecting the model parameters necessary for the PMP simulation, as guided by the User's Manual (USACE, 2010). Supporting calculations for development of the model input parameters are provided in Attachment 1 to this memorandum.

WATERSHED SUBBASINS

The DPW Water Division's Dam Inspection/Evaluation Report dated April 2013 indicates the Reservoir Dam drainage area is 4.4 square miles of lightly developed land. Massachusetts Global Information System (GIS) Light Detection and Ranging (Lidar) topographic data (USGS 2011) was used to delineate the First Herring Brook watershed. This Computer Aided Design (CAD) delineation confirmed the Reservoir Dam watershed area at 4.3 square miles. This technique was used to further delineate the First Herring Brook watershed into three sub basins (Figure C-1). These sub-basins were measured at 3.5, 0.8, and 1.1 square miles for Tack Factory Pond (Sub-basin A), Reservoir Dam (Sub-basin B), and Old Oaken Bucket Pond (Sub-basin C) respectively.

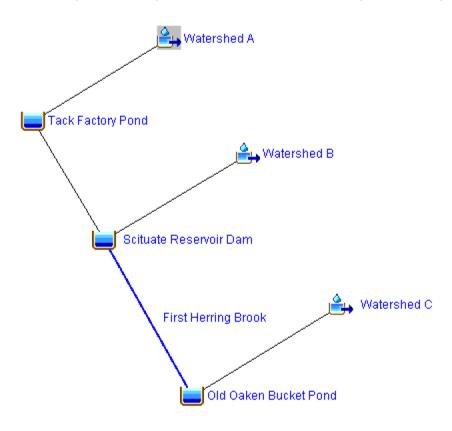


Figure C-1. Watershed Sub-basins

INFILTRATION LOSSES

Infiltration losses are the difference between rainfall and runoff volumes (HEC-HMS Technical Guide). The Soil Conservation Service (SCS) Curve Number method was selected for the watershed to represent all of the different soil group and land use combinations within the drainage basin. The Lidar data was used to calculate the percentage of impervious area within the each sub-basin using measurement of the total length of roads within each sub-basin and an average road width of 25 feet. The proportion of impervious surface over the three sub-basins was determined to be 1.67%, 3.06%, and 2.7% of each area, respectively.

An estimation of the curve number was determined for each sub-basin using the NRCS Web Soil Survey (NRCS USDA, 2017) with the watershed delineated as the area of interest. Each Subbasin's soil map was downloaded and a curve number (CN) was then estimated for each soil group using methods described in TR-55 (USDA, 1986). The pervious CN was determined to be 70, 66, and 66 using Table 2-2a in TR-55. Since the percentage of impervious area within the watershed is less than 30% of unconnected impervious area, composite CNs needed to be calculated. Using Table 2-4 within TR-55, composite CNs for sub-basins A, B, and C were calculated to be 70.5, 70, and 68.5; assuming the ratio of unconnected impervious to total impervious was 1. Average watershed slopes were determined from the Scituate, MA and Cohasset, MA USGS topographic maps of the watershed area, using distances of the longest estimated flow path across each watershed and the elevations at the end points. This method resulted in slopes of 0.47%, 1.57%, and 1.55%; respectively.

The SCS unit hydrograph analysis was selected as the transform method for surface runoff calculations in the HEC-HMS model. This analysis is useful to develop flood hydrographs for ungaged watersheds in cases with extreme rainfall events. A unit hydrograph is the direct runoff from one unit of excess precipitation occurring uniformly and scaled by the time lag for the watershed.

Time lag may be calculated using several different methods. For this study, the Natural Resource Conservation Service (NRCS) watershed lag method described in the NRCS National Engineering Handbook (NEH) (NRCS USDA, 2010) was used. For the NRCS watershed lag method using curve numbers of 70.5, 70, and 68.5 (see above), the lag time or time between peak inflow and outflow (t_p), for each sub-basin was calculated to be 436.6, 70.6, and 100.6 minutes respectively, using equation 1 (Eq. 1).

$$t_p = \frac{L^{0.8}(S+1)^{0.7}}{1900\sqrt{y}}$$
(Eq. 1)

where:

L= 22,123; 4,752; 6,969 S = $\frac{1000}{CN} - 10 = 4.18; 4.29; 4.60$ y = 0.47; 1.57; 1.55 Length to divide (ft.) or watershed length Potential abstraction (in.) Average watershed slope (%)

BASEFLOW

Baseflow is the amount of streamflow that exists regardless of excess rainfall from a storm event. The recession baseflow method was selected for the HEC-HMS simulations of the Scituate's Reservoir Dam since this method approximates typical behavior in watersheds when the channel flow exponentially declines after the peak discharge. The baseflow recession constant, k_{hr} , was calculated in the 2017 model with one basin using (Eq. 26) (USDOI 1973) to be 0.78 for a 24-hour storm. The constant describes the rate that baseflow recedes between storm events. The maximum PMP discharge was assumed to be 4,500 cfs with the discharge at the end of the storm

receding to the initial discharge (12 cfs) (Tetra Tech 2017). While treating each sub-basin separately gave recession constant values of 0.78, 0.76, and 0.76 when a PMP storm was modeled (4,454 cfs, 1,815 cfs, and 2,533 cfs peak discharge for each sub-basin); a conservative recession constant of 0.78 was used for all sub-basins.

$$k_{hr} = \sqrt[t]{\frac{q_t}{q_o}}$$
(Eq. 2)

where:	t = 24	Time interval between points 1 and 2 (hours)
	$q_t = 12$	Discharge at second point (cfs)
	qo =4,500	Discharge at first point (cfs)

Model Parameters

Four separate water-retaining elements were modeled in HEC-HMS to fully define the watershed (Figure C-1). Tack Factory Pond, downstream of Watershed A, was modeled as an orifice outlet with potential dam overtopping. Reservoir Dam, downstream of Watershed B and Tack Factory Pond, was modeled with an ogee spillway outlet with potential dam overtopping. A reach for First Herring Brook was modeled downstream of Scituate Reservoir Dam, and finally Old Oaken Bucket Pond; downstream of Watershed C and First Herring Brook, was modeled with an orifice outlet with potential dam overtopping.

Tack Factory Pond

Tack Factory Pond's outlet was modeled as a single-barrel orifice outlet, with parameters for center elevation, area, and discharge coefficient representative of the CJCH culvert with the dam and CJCH overtopping at flood flows. The dam overtopping model include parameters for elevation, length, and weir flow (spillway) coefficient as summarized in Table C-8.

An elevation-discharge curve for Tack Factory Pond (Table C-1) combined these two elements assuming that the culvert would always remain submerged and there was no overtopping flow over the culvert since the dam length included the culvert section. The tailwater elevation for the culvert was assumed to be held at 40.5 ft NAVD1988, the target level for Reservoir Dam. Tailwater would increase during a storm, which would decrease culvert flow resulting in an overestimation of CJCH overtopping conditions. The model results would be conservative and would be representative of the flood levels since the majority of flow occurs over CJCH at Tack Factory Pond El.43.0 ft.

Subbasin	
Area (mi ²)	3.5380
Curve Number	70.5
Impervious (%)	1.67
Lag Time (min.)	436.6
Initial Discharge (cfs)	9.873
Recession Constant	0.78
Tack Factory Pond	
Initial Elevation (ft. NAVD1988): Existing	40.5
Main Tailwater: Downstream of Main Discharge (Rating	Table C-4,
Curves: Existing, Proposed)	Table C-10
Culvert	
Culvert Center Elevation (ft.)	34.65
Culvert Area (sq. ft.)	47
Coefficient	0.6
Dam Top (CJCH)	
Elevation (ft NAVD1988)	42.3
Length (ft)	160.6
Coefficient	2.6
Meteorological Model (PMP conditions)	
Probability (%)	2
Intensity Duration (hr.)	6
Storm Duration (hr.)	24
Intensity Position (%)	50
Storm Area (mi ²)	10
Total PMP / 1/2 PMF 6 Hours (in.)	23.5 / 13.2
Total PMP / 1/2 PMF 12 Hours (in.)	25.9 / 14.5
Total PMP / 1/2 PMF 24 Hours (in.)	28.2 / 15.8
Control Specifications	
Start Date	10 Mar
Start Time	00:00
End Date	20 Mar
End Time	00:00
Time Interval (minutes)	20

Table C-8. Input parameters for Tack Factory Pond HEC-HMS hydrologic modeling

The HEC-HMS program uses frequency storms to develop a PMP distribution. For this study, a storm with a 2% probability of exceedance (50-year storm frequency) and a 24 hour duration

was used as model input. Design of Small Dams (USDOI 1973) defines the PMP precipitation near Scituate, MA for the 6-hour storm event to be approximately 23.5 inches (DPW 2013). Precipitation values were adjusted for 12 and 24 hour storm durations using the appropriate figures in Design of Small Dams (*see Attachment 2 to this memorandum* Table 43).

Reservoir Dam

The model parameters for the existing ogee spillway, including the approach depth and head loss, crest elevation and length, apron elevation and length, and the design head, are consistent with the previous 2017 model as summarized in . The approach depth is the difference between the spillway crest and the bottom of the reservoir upstream of the spillway since there is no approach channel. Observations in 2016 and DPW water measurements indicate the approach depth is approximately 10 ft. The approach head loss would be approximately equal to one-half of the velocity head ($V^2/2g$) at the spillway crest. At a 2,000 cfs discharge and the existing spillway design head, the approach head loss would be less than one foot (Tetra Tech 2017). Crest length is the total width that water passes through the spillway. The apron elevation is the elevation at the bottom of the spillway (El. 25.0 ft. NAVD1988) and a 35 ft. length. The design head is the total energy head for which the spillway is designed, which appears to be approximately 5 ft. assuming a 1.5 ft. freeboard.

Subbasin	
Area (mi ²)	0.7796
Curve Number	70
Impervious (%)	3.1
Lag Time (min.)	70.6
Initial Discharge (cfs)	2.176
Recession Constant	0.78
Reservoir Dam	
Initial Elevation (ft. NAVD1988): Existing / Proposed	38.9 / 40.4
Length (ft)	500
Coefficient	2.6
Dam elevation (ft. NAVD1988)	45.0
Ogee Spillway	
Approach Depth (ft.)	10
Approach Loss (ft.)	1
Crest Elevation (ft. NAVD1988): Existing / Proposed	38.9 / 40.4
Crest Length (ft.): Existing / Proposed	37.5 /36.5
Apron Elevation (ft.)	25.0
Apron Length (ft.)	35
Design Head (ft.)	5

Table C-9. Input parameters for Reservoir Dam HEC-HMS hydrologic modeling

Meteorological Model (PMP conditions)	
Probability (%)	2
Intensity Duration (hr.)	6
Storm Duration (hr.)	24
Intensity Position (%)	50
Storm Area (mi ²)	10
Total PMP / 1/2 PMP 6 Hours (in.)	23.5 / 13.2
Total PMP / ½ PMP 12 Hours (in.)	25.9 / 14.5
Total PMP / ½ PMP 24 Hours (in.)	28.2 / 15.8
Control Specifications	
Start Date	10 Mar
Start Time	00:00
End Date	20 Mar
End Time	00:00
Time Interval (minutes)	20

For the current modeling effort, an elevation-discharge curve was calculated combining the spillway and entire dam overtopping flow (Table C-3). The model used a specified spillway for the existing fixed crest spillway with a discharge curve determined from the formula $Q = CLH^3/2$ with coefficient C = 3.1, L = 37.5 ft, and height H = the head above an initial elevation of 38.9 ft.

A discharge rating curve for the proposed spillway (Table C-10) was derived using coefficient C = 3.1, L = 36.5 ft, and height H = the head above an initial elevation of 36.5 ft. While the actual spillway gate would operate under a proportional or otherwise optimized controller that would have ; for this model the gate was assumed to be either fully closed or fully open. The entire dam above El. 45.0 ft was modeled as spillway with a coefficient of 2.6 and length of 500 ft.

Reservoir Level (ft. NAVD88)	Spillway Discharge (cfs)	Reservoir Level (ft. NAVD88)	Spillway Discharge (cfs)
40.39	0	42.4	1,663
40.40	10	42.9	1,875
40.41	905	43.5	2,141
40.6	974	43.9	2,234
40.9	1,080	44.4	2,560
41.5	1,202	45.0	2,854
41.9	1,459	46.0	4,666

Table C-10. Reservoir Dam Proposed Spillway Discharge Data

Technical Memorandum Proposed Spillway Design Derivation of the lag time for Tack Factory Pond using the NRCS methodology is discussed above in the Baseflow section. The PMP distribution is the same as discussed above for Tack Factory Pond.

Old Oaken Bucket Pond

Old Oaken Bucket Pond's culvert (two 3 ft x 4 ft stone culverts) was modeled as a single-barrel orifice outlet, with parameters for center elevation, area, and coefficient given below in Table C-11. The dam overtop model includes parameters for elevation, length, and a weir flow (spillway) coefficient. An elevation-discharge curve was calculated for Old Oaken Bucket Pond combining these two elements, assuming that the culvert would remain flooded and no weir flow through the culvert would occur (Table C-5). Orifice flow was calculated using the equation $Q = CA(2gh)^{0.5}$ with H = the head above an initial elevation of 15.2 ft; while weir flow over Country Way in the event of overtopping was modeled using $Q = CLH^{1.5}$ with H = the head above an initial elevation of 22.1 ft.

Subbasin C	
Area (mi ²)	1.1228
Curve Number	68.5
Impervious (%)	2.7
Lag Time (min.)	100.6
Initial Discharge (cfs)	3.133
Recession Constant	0.78
Old Oaken Bucket Pond	
Initial Elevation (ft. NAVD1988):	18.9
Culvert	
Culvert Center Elevation (ft. NAVD1988)	15.2
Culvert Area (sq ft.)	24
Coefficient	0.6
Dam Top (CJCH)	
Elevation (ft NAVD19988)	22.1
Length (ft)	370
Coefficient	2.6
Meteorological Model (PMP conditions)	
Probability (%)	2
Intensity Duration (hr.)	6
Storm Duration (hr.)	24
Intensity Position (%)	50
Storm Area (mi ²)	10
Total PMP / 1/2 PMP 6 Hours (in.)	23.5 / 13.2

Table C-11. Input parameters for Old Oaken Bucket Pond HEC-HMS hydrologic mode
--

Technical Memorandum Proposed Spillway Design

Total PMP / 1/2 PMP 12 Hours (in.)	25.9 / 14.5
Total PMP / 1/2 PMP 24 Hours (in.)	28.2 / 15.8
Control Specifications	
Start Date	10 Mar
Start Time	00:00
End Date	20 Mar
End Time	00:00
Time Interval (minutes)	20

ASSESSMENT OF EXISTING SPILLWAY DESIGN

The 60% HEC-HMS modeling simulated the PMF for the existing spillway with lag times of 620 minutes (NRCS TR-55 methodology) and 812 minutes (SCS Unitgraph methodology) using a 50% rainfall intensity position. A simulation time of three days was selected for the initial modeling to ensure that the runoff from the 24-hour storm was entirely depicted with 2-hour and 3-hour time intervals selected for the basin model set-up with 620- and 812- minute lag times, respectively. A section of the time series of the simulation for the 24-hour PMF storm duration is shown in Table C-12 for the 620 minute lag time and Table C-13 for the 812 minute lag time. The bolded row in both tables shows the point at which the dam is overtopped for the full PMF. The model indicates that the peak PMF outflow would be 3,680 cfs with a 620 minute lag time and 2,718 cfs with an 812 minute lag time. Table C-14 summarizes the 2017 PMF model results.

The 60% model indicated that the ½ PMF would be 1,840 cfs and 1,359 cfs with the 620 minute and 812 minute lag times, respectively. The maximum elevation of the Reservoir Dam impoundment during the ½ PMF would be El. 45.1 ft. NAVD88 at 1,840 cfs and El. 44.1 ft. NAVD88 at 1,359 cfs peak discharge as determined from the existing spillway discharge rating curve (Table C-4). The dam embankment is overtopped by approximately 0.1 ft. at 1,840 cfs. At 1,359 cfs, the dam embankment is not overtopped, but there is only 0.9 ft. of freeboard. A summary of the ½ PMF parameters is presented in Table C-15.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	8:00	14	484.1	39.0	3	38.9
10-Mar-17	10:00	23	486.6	39.0	4	38.9
10-Mar-17	12:00	122	497.2	39.2	13	39.0
10-Mar-17	14:00	423	536.2	39.7	64	39.5
10-Mar-17	16:00	1,052	631.7	40.9	255	40.6
10-Mar-17	18:00	1,959	801.0	42.6	693	42.2
10-Mar-17	20:00	2,901	1,027.4	44.5	1,382	44.1
10-Mar-17	22:00	3,573	1,265.9	46.3	2,133	45.3
11-Mar-17	00:00	3,782	1,468.1	47.6	2,719	45.6
11-Mar-17	02:00	3,705	1,568.3	49.4	3,576	45.9
11-Mar-17	04:00	3,629	1,574.8	49.6	3,680	46.0
11-Mar-17	06:00	3,555	1,568.6	49.4	3,580	45.9
11-Mar-17	08:00	3,482	1,564.2	49.2	3,510	45.9
11-Mar-17	10:00	3,410	1,559.7	49.1	3,438	45.9
11-Mar-17	12:00	3,340	1,555.2	48.9	3,368	45.9
11-Mar-17	14:00	3,272	1,550.8	48.8	3,299	45.8
11-Mar-17	16:00	3,205	1,546.5	48.7	3,231	45.8

Table C-12. 2017 Existing Reservoir Dam Spillway PMF Time Series Results – 620 Minute Lag Time

Table C-13. 2017 Existing Reservoir Dam Spillway PMF Time Series Results – 812 Minute Lag Time

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10Mar2017	00:00	12.0	476.6	38.9	0.0	38.9
10Mar2017	03:00	11.8	479.5	38.9	0.7	38.9
10Mar2017	06:00	12.0	482.1	39.0	1.8	38.9
10Mar2017	09:00	15.0	484.8	39.0	3.3	38.9
10Mar2017	12:00	140.6	501.6	39.3	17.6	39.1
10Mar2017	15:00	551.7	570.1	40.1	124.5	39.9
10Mar2017	18:00	1312.2	724.0	41.8	481.7	41.5
10Mar2017	21:00	2214.9	951.9	43.9	1147.7	43.5
11Mar2017	00:00	2800.9	1186.0	45.7	1890.3	45.1
11Mar2017	03:00	2922.7	1355.6	46.9	2405.6	45.5
11Mar2017	06:00	2833.3	1440.4	47.4	2642.1	45.6
11Mar2017	09:00	2746.7	1467.7	47.6	2718.1	45.6
11Mar2017	12:00	2662.7	1465.2	47.5	2711.2	45.6

Technical Memorandum Proposed Spillway Design

Ti	ag me in.)	Peak Inflow (cfs)	Peak Outflow (cfs)	Total Inflow (in)	Total Outflow (in)	Peak Storage (ac-ft.)	Peak Elevation (ft.)
6	20	3,782	3,680	126.3	125.2	1,574.8	49.6
8	12	2,922.7	2,718.1	99.8	98.8	1,467.7	47.6

Table C-14. 2017 Existing Reservoir Dam Spillway PMF Summary

Table C-15. 2017	Existing	Reservoir	Dam	Spillway	$\frac{1}{2}PM$	F Summarv
					/ 2	

Lag Time (min.)	Peak Inflow (cfs)	Peak Outflow (cfs)	Total Inflow (in)	Total Outflow (in)	Peak Storage (ac-ft.)	Peak Elevation (ft.)
620	1,891	1,840	63.2	62.6	1,098.1	45.1
812	1,461	1,359	49.9	49.4	975.6	44.1

The 2018 updated model simulated a 24-hour PMP storm model for the watershed subbasins with lag times of 437, 71, and 101 minutes (NRCS TR-55 methodology) using a 50% rainfall intensity position. A simulation time of ten days was selected to ensure that the runoff from the 24-hour storm was entirely depicted, with 20 minute time intervals. A section of the time series simulation for the 24-hour PMF storm duration is shown in Table C-16 for the Existing Reservoir Dam. The bolded row in both table shows the point at which the dam is overtopped for the full PMP storm. The model indicates that the peak PMF outflow for Reservoir Dam would be 4,931 cfs, 25% greater than the 2017 analysis.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	2	476.6	38.9	-	38.9
10-Mar-17	2:00	10	477.5	38.9	0	38.9
10-Mar-17	4:00	13	479.4	38.9	1	38.9
10-Mar-17	6:00	16	481.6	39.0	2	38.9
10-Mar-17	8:00	40	485.0	39.0	4	38.9
10-Mar-17	10:00	407	503.5	39.3	22	39.1
10-Mar-17	12:00	1,539	655.0	41.4	370	41.1
10-Mar-17	14:00	1,794	822.5	43.4	970	43.0
10-Mar-17	16:00	3,932	1,065.8	45.9	3,176	45.8
10-Mar-17	18:00	4,202	1,101.6	46.3	4,019	46.1
10-Mar-17	20:00	4,903	1,131.7	46.6	4,796	46.4
10-Mar-17	20:20	4,931	1,134.1	46.6	4,862	46.4
10-Mar-17	20:40	4,930	1,135.5	46.6	4,899	46.5
10-Mar-17	21:00	4,902	1,135.8	46.6	4,908	46.5
10-Mar-17	21:20	4,848	1,135.2	46.6	4,890	46.5
10-Mar-17	21:40	4,771	1,133.5	46.6	4,846	46.4
10-Mar-17	22:00	4,674	1,131.1	46.6	4,779	46.4
11-Mar-17	0:00	3,814	1,102.4	46.3	4,038	46.1
11-Mar-17	2:00	2,812	1,061.8	45.9	3,082	45.7

Table C-16. 2018 Existing Reservoir Dam Spillway PMF Time Series Results

To model the effects of a ¹/₂ PMF storm for the entire watershed, the ¹/₂ PMF was calculated two separate ways. First, a ¹/₂ PMP storm was modeled using exactly half the rainfall of the PMP storm; i.e. a ¹/₂ PMP storm. This resulted in a ¹/₂ PMF at Reservoir dam of 2,136 cfs inflow. A section of the time series simulation for the 24-hour ¹/₂ PMP storm is shown in Table C-17 for Reservoir Dam. Secondly, rainfall values for a "¹/₂ PMF storm" were iterated such that the peak inflow for Reservoir Dam would be within 1 percent of half of the PMF inflow; i.e. 2,465 cfs. A section of the time series simulation for this 24-hour "¹/₂ PMF" storm is shown in Table C-18 for Reservoir Dam This resulted in a more conservative value for the ¹/₂ PMF. A summary of the ¹/₂ PMP storm and "¹/₂ PMF" storm results at Reservoir Dam is presented in Table C-19.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	2	476.6	38.9	-	38.9
10-Mar-17	2:00	9	477.5	38.9	0	38.9
10-Mar-17	4:00	12	479.2	38.9	1	38.9
10-Mar-17	6:00	13	481.2	39.0	2	38.9
10-Mar-17	8:00	14	483.1	39.0	3	38.9
10-Mar-17	10:00	104	487.1	39.1	5	38.9
10-Mar-17	12:00	605	542.8	39.9	88	39.7
10-Mar-17	14:00	805	630.8	41.1	298	40.8
10-Mar-17	16:00	1,370	726.8	42.3	611	41.9
10-Mar-17	18:00	1,637	838.9	43.6	1,038	43.2
10-Mar-17	20:00	2,103	944.2	44.7	1,464	44.3
10-Mar-17	20:20	2,127	961.1	44.9	1,534	44.5
10-Mar-17	20:40	2,136	976.5	45.0	1,611	44.7
10-Mar-17	21:00	2,132	989.1	45.2	1,744	45.0
10-Mar-17	21:20	2,116	998.0	45.3	1,862	45.1
10-Mar-17	21:40	2,090	1,003.5	45.3	1,944	45.1
10-Mar-17	22:00	2,053	1,006.4	45.3	1,989	45.2
10-Mar-17	22:20	2,009	1,007.3	45.4	2,004	45.2
10-Mar-17	22:40	1,958	1,006.9	45.3	1,996	45.2
10-Mar-17	23:00	1,901	1,005.3	45.3	1,972	45.2

Table C-17. 2018 Existing Reservoir Dam Spillway 1/2 PMP Storm Time Series Results

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	2	476.6	38.9	-	38.9
10-Mar-17	2:00	9	477.5	38.9	0	38.9
10-Mar-17	4:00	12	479.3	38.9	1	38.9
10-Mar-17	6:00	13	481.2	39.0	2	38.9
10-Mar-17	8:00	15	483.2	39.0	3	38.9
10-Mar-17	10:00	135	488.4	39.1	6	39.0
10-Mar-17	12:00	714	555.3	40.1	114	39.9
10-Mar-17	14:00	924	654.6	41.4	369	41.0
10-Mar-17	16:00	1,580	763.0	42.7	739	42.3
10-Mar-17	18:00	2,025	892.3	44.2	1,258	43.8
10-Mar-17	20:00	2,462	1,009.9	45.4	2,045	45.2
10-Mar-17	20:20	2,476	1,019.3	45.5	2,207	45.4
10-Mar-17	20:40	2,475	1,025.2	45.5	2,315	45.4
10-Mar-17	21:00	2,460	1,028.6	45.6	2,378	45.5
10-Mar-17	21:20	2,432	1,030.0	45.6	2,407	45.5
10-Mar-17	21:40	2,392	1,030.1	45.6	2,409	45.5
10-Mar-17	22:00	2,342	1,029.2	45.6	2,391	45.5
11-Mar-17	0:00	1,956	1,013.1	45.4	2,099	45.3
11-Mar-17	2:00	1,593	988.4	45.2	1,736	45.0

Table C-18. 2018 Existing Reservoir Dam Spillway "1/2 PMF" Storm Time Series Results

Table C-19. 2018 Existing Reservoir Dam 1/2 PMF Summary

Storm	Peak Inflow (cfs)	Peak Outflow (cfs)	Total Inflow (in)	Total Outflow (in)	Peak Storage (ac-ft.)	Peak Elevation (ft.)
¹ / ₂ PMP	2,136	2,004	30.7	30.4	1,007.3	45.4
"½ PMF"	2,476	2,409	35.3	35.1	1,030.1	45.6

PARAMETER VALIDATION

Simulations with the HEC-HMS model were completed during the 2017 60% design to determine the sensitivity of the peak rainfall intensity position on peak discharge and to verify

the watershed characteristic assumptions and lag time calculations using the NRCS T-55 and SCS Unitgraph methods using known floods.

INTENSITY POSITION SENSITIVITY

Three peak rainfall intensity positions (25%, 50%, and 75%) were evaluated to determine sensitivity of the position on maximum outflow. Additional HEC-HMS simulations for the PMF were completed with the 620 minute lag time for the existing spillway to compare 25% and 75% peak rainfall intensity positions to the 50% peak rainfall peak intensity results, as described below. Peak PMF outflow varied by about 270 cfs between 25% and 75% intensity positions (*see* Table C-20). Since peak outflows for the 25% and 75% intensity positions vary less than 5% of the 50% intensity position peak outflow, peak rainfall intensity position has minimal effect on peak PMF discharges and 50% storm intensity position was considered reasonable for the watershed.

Intensity Position	Peak Inflow (cfs)	Peak Outflow (cfs)	Total Inflow (in.)	Total Outflow (in.)	Peak Storage (ac-ft)	Peak Elevation (ft.)
25%	3,619	3,488	121.4	120.4	1,562.9	49.2
50%	3,782	3,680	126.3	125.2	1,574.8	49.6
75%	3,872	3,758	128.8	127.6	1,579.7	49.7

Table C-20) PMF	results	with	varving	storm	intensity	positions
10010 0-20		1 Courto	******	varying	siorm	inclusity	positions.

WATERSHED CHARACTERISTICS VALIDATION

Two actual storm events were evaluated with the 2014 HEC-HMS model to validate the HEC-HMS parameters and results were compared for the different lag times described above. Simulations were completed for the Mother's Day Storm that occurred in Scituate, MA on May 13, 2006 and the most recent storm on April 1, 2017.

The daily precipitation values for the Mother's Day Storm were measured by the Town's Water Department at the Water Treatment Plant and by the National Oceanic and Atmospheric Administration (NOAA) Plymouth Municipal Airport rain gage (NCDC, 2017). The precipitation values at the NOAA rain gage were significantly lower than the Water Department measurements (*see* Table C-21). This difference can be attributed to a dissimilar storm distribution pattern with the NOAA rain gage located approximately 19.3 miles south of Scituate.

Dete	Precipitation (in., 9am-8am)					
Date	Water Department	NOAA				
5/12/2006	0.06	0.02				
5/13/2006	0.90	0.81				
5/14/2006	4.49	2.66				
5/15/2006	3.15	0.22				
5/16/2006	0.87	0.48				
5/17/2006	0.22	0.59				

Table C-21. Mother's Day Storm daily precipitation values

The daily precipitation values recorded by the Water Department were distributed according to the hourly NOAA values to develop a reasonable approximation of the rainfall for the Mother's Day Storm. The ratios between the Water Department and NOAA daily rain precipitations were applied to the NOAA hourly data to form a realistic rain distribution at the Reservoir Dam (*see* Figure C-221). The timing of distribution was adjusted such that the calculated accumulated daily values matched the measured Water Department values at 8:00 AM each day.

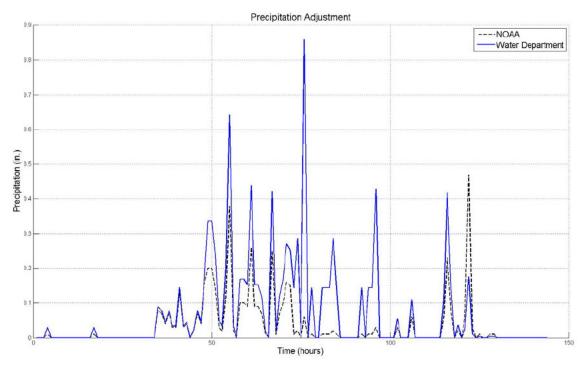


Figure C-2. Adjustment of Scituate Reservoir Dam Water Department precipitation values.

The Mother's Day Storm was a four-day storm beginning on May 12, 2006 around 7:00 PM and ending on May 16, 2006 around 5:00PM. Table C-22 shows the accumulated precipitation

values, obtained from the adjusted rain distribution, starting from one hour after the beginning of the storm through the fourth day.

Table C-22. Accumulated	Precipitation for	the Mother's Day Storm	at the Reservoir Dam.

Time	Precipitation (in.)
1 Hour	0.09
2 Hours	0.17
3 Hours	0.21
6 Hours	0.36
12 Hours	0.68
1 Day	2.94
2 Days	7.11
4 Days	9.63

The largest rainfall peaks for the Mother's Day Storm indicate that the intensity position occurred around 41% (*see* Figure C-332). The nearest intensity position of 50% was selected to simulate the frequency storm of 1%. A recession constant of 0.94 was calculated for a four-day storm using (Eq. 26) (see Methodology Section).

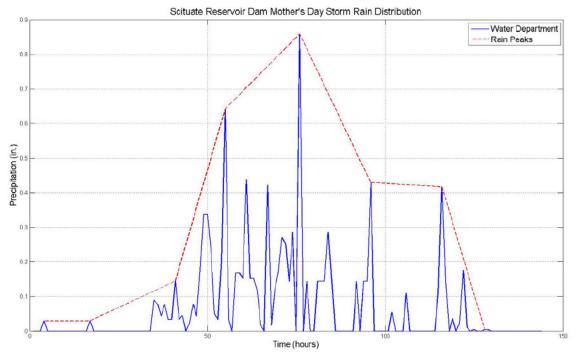


Figure C-3. Mother's Day Storm Dam Peak Rain Distribution at Reservoir Dam

The results of Mother's Day Storm simulations are presented in Table C-23 for the 620 minute and 812 minute lag times evaluated for the watershed. Peak outflow was 371 cfs for the 620

minute lag time and 310 cfs with the 812 minute lag time. The model results indicate the Reservoir Dam impoundment levels were El. 41.4 ft. NAVD88 and El. 41.1 ft. NAVD88 for the 620 and 812 minute lag times, or 2.5 ft. and 2.2 ft., respectively, above the spillway crest.

Lag Time (min.)	Storm	Peak Inflow (cfs)	Peak Outflow (cfs)	Total Inflow (in.)	Total Outflow (in.)	Peak Storage (ac-ft)	Peak Elevation (ft.)
812	200-yr	808.6	781	44.1	42.9	831.3	42.9
812	100-yr	652.4	629.1	35.6	34.6	778.2	42.4
812	50-yr	524.2	506.6	28.7	27.8	733.3	41.9
812	Mother's Day	319	309.5	18.3	17.7	655.6	41.1
620	200-yr	1,003	968	54.9	53.6	894.9	43.4
620	100-yr	810	781	44.3	43.2	831.2	42.9
620	50-yr	652	627	35.6	34.7	777.5	42.4
620	Mother's Day	382	371	22.0	21.3	680.7	41.4

Table C-23. Results of Mother's Day Storm simulations.

Water Department personnel have indicated that the water levels in Tack Factory Pond were almost up to the low point in Chief Justice Cushing Highway (CJCH) (El. 42.4 ft. NAVD88). This level is approximately 3.5 ft. above the spillway crest. The impoundment water levels simulated with HEC-HMS model are consistent with the observed water levels. Assuming the CJCH has a flow area of 50 ft.², water levels on the Tack Factory Pond would be expected to be 0.8-1.2 ft. higher than the Reservoir Dam Impoundment.

The NOAA Atlas 14 precipitation distributions for 50-, 100-, and 200- year storms for Scituate, MA (NOAA NWS, 2014) were also simulated with the HEC-HMS model with the two lag times. Peak discharges ranged from 507 cfs for the 50-year storm and 812 minute lag up to 968 cfs for the 200-year storm and 620 minute lag time. The simulations indicate that flood flows would not overtop the dam embankment for any of the storm events with both lag times, as shown in Table C-23.

April 1, 2017 Storm

A rainstorm that occurred on April 1, 2017 was also evaluated with the HEC-HMS model with a time lag of 620 minutes. Rainfall amounts and Reservoir levels were obtained for this storm (*see* Table C-24). The March 31, 2017 5:00 PM to April 1, 2017 4:00 PM NOAA hourly precipitation data from the NOAA Blue Hill Local Climatological Data (LCD), MA rain gage was used to model the one-day storm precipitation distribution at Reservoir Dam (NCDC, 2017). The rain gage is located about 18.2 miles west of the Scituate Reservoir Dam and measured an accumulation of 2.57 in. of rain by 4:00 PM on April 1, 2017 (*see* Table C-25). The NOAA data and the measurements obtained at the reservoir were very similar. Due to their similarities, the simulated peak elevation should theoretically be near the measured El. 40.2 ft. at 4:00 PM.

Date	Time	Rain (in.)	Reservoir Level (ft.)	
3/31/17	8:00 AM	0	38.9	
4/1/17	8:00 AM	2.15	39.8	
4/1/17	4:00 PM	-	40.2	

Table C-24. Measured precipitation and reservoir levels.

Table C-25. Gaged precipitation from NOAA Blue Hill LCD.

Time	Precipitation (in.)
1 Hour	0.05
2 Hours	0.08
3 Hours	0.15
6 Hours	0.48
12 Hours	1.11
1 Day	2.57

The total inflow was calculated to be 2.13 inches, which is slightly lower than the actual 4:00 PM accumulated precipitation at the reservoir (*see* Table C-26). This slight difference can be attributed to differences in the storm distribution patterns at the rain gage and Reservoir Dam. A peak elevation was calculated to be about 0.2 ft. lower than the measured elevation, which confirms that the HEC-HMS model input parameters are reasonable and representative of the watershed characteristics.

Table C-26. April 1, 2017 rainstorm simulation results.

Storm	Peak	Peak	Total	Total	Peak	Peak
	Inflow	Outflow	Inflow	Outflow	Storage	Elevation
	(cfs)	(cfs)	(in.)	(in.)	(ac-ft)	(ft.)
1-Apr-17	60.7	51	2.13	2.06	527.6	39.6

ASSESSMENT OF PROPOSED SPILLWAY MODIFICATIONS

RESERVOIR **D**AM

The 2017 60-percent HEC-HMS simulations for the existing spillway indicated that the watershed has lag times between 620 and 812 minutes corresponding to ½ PMF peak discharges of 1,840 and 1,359 cfs, respectively. The ½ PMF discharge of 1,840 cfs was selected as a conservative SDF peak discharge for Reservoir Dam since the shorter lag time results in a higher peak discharge. Spillway modifications were evaluated to increase the spillway discharge capacity for the SDF with adequate freeboard to prevent overtopping of the earthen embankment.

The proposed spillway modifications require lowering of the ogee-shaped crest to El. 36.5 ft. NAVD88. The new ogee shape would have a similar shape as the existing spillway but would have a bottom-hinged crest gate to maintain the maximum normal pool at El. 40.4 ft. NAVD88. The new crest would have a 3.1 discharge coefficient similar to the existing spillway.

The spillway section would be extended upstream to provide a concrete approach apron and downstream to support the crest gate. The new concrete ogee section would be anchored by dowels drilled into the existing spillway mass concrete ogee section. The new ogee crest length would be 36.5 ft. long to allow the gate to fit inside the existing abutment walls.

The discharge rating curve data for the proposed spillway is presented in Table C-10. The proposed spillway would have a total discharge capacity of 2,854 cfs with the Reservoir Dam impoundment level at the top of dam (El. 45.0 ft. NAVD88). The 2017 model indicated that the reservoir level would be approximately El. 42.8 ft. NAVD88 at the ½ PMF (1,840 cfs) peak flow with the proposed spillway gate full open. At the ½ PMF peak reservoir level, there would be about 2.2 ft. of freeboard with no wave action.

Potential wave heights at the Reservoir Dam embankment were determined to be as high as 2.5 ft. based on the 2,000 ft maximum open water fetch distance from the north and a 74 mile per hour (mph) Category 1 hurricane minimum wind speed. The proposed spillway provides 1.0 ft. of freeboard with a wave equal to one-half of a Category 1 hurricane wave (1.2 ft) that could be expected to hit the dam during the $\frac{1}{2}$ PMF event.

The 2017 HEC-HMS model with Tack Factory Pond and Reservoir Dam combined as a single basin was used to evaluate the PMF conditions with the modified spillway similar to the existing spillway simulations. These simulations assume a starting reservoir level at maximum normal pool El. 40.4 ft. NAVD88 and initiation of the gate opening at the beginning of the storm with the gate fully open prior to the peak rainfall intensity. Table C-27 and Table C-28 present a section of the time series for the PMP simulation for the 24-hour storm duration with watershed lag times of 620 minutes and 812 minutes, respectively.

Table C-29 summarizes the 2017 PMF results for the proposed spillway design. The full PMF peak discharge was calculated to be 3,506 cfs with a 620 minute lag time and 2,763.5 cfs with an 812 minute lag time.

The ½ PMF would be 1,753 cfs and 1,382 cfs with the 620 minute and 812 minute lag times, respectively, as shown in Table C-30 for the 2017 HEC-HMS simulations. The proposed spillway modifications result in an 88 cfs reduction in the ½ PMF SDF for the existing spillway with a 620 minute watershed lag time because of the additional spillway capacity. The maximum elevation of the Reservoir Dam impoundment during the ½ PMF would be El. 42.6 ft. NAVD88 at 1,753 cfs and El. 41.7 ft. NAVD88 at 1,382 cfs peak discharge as determined from the existing spillway discharge rating curve (Table C-4). Maximum water levels in the impoundment are 2.4-3.3 ft. for both of these scenarios. At 1,753 cfs, the dam embankment is not overtopped and there is 0.9 ft. of freeboard above the crest of a 1.5 ft. wave.

Date	Time	Inflow (cfs)	Storage (ac-ft)	Elevation (ft)	Outflow (cfs)	Stage (ft)
10Mar2017	00:00	12	590.3	40.4	774	40.0
10Mar2017	02:00	12	496.1	39.2	427	38.8
10Mar2017	04:00	12	443.5	38.4	250	37.8
10Mar2017	06:00	12	412.3	37.9	160	37.3
10Mar2017	08:00	15	392.4	37.6	111	37.0
10Mar2017	10:00	23	379.6	37.4	83	36.9
10Mar2017	12:00	123	378.1	37.4	80	36.8
10Mar2017	14:00	424	404.8	37.8	141	37.2
10Mar2017	16:00	1,052	482.9	39.0	382	38.5
10Mar2017	18:00	1,959	622.6	40.8	895	40.4
10Mar2017	20:00	2,901	811.5	42.7	1,608	42.3
10Mar2017	22:00	3,574	1,013.2	44.4	2,349	44.0
11Mar2017	00:00	3,783	1,180.6	45.7	2,924	45.1
11Mar2017	02:00	3,705	1,285.6	46.4	3,262	45.8
11Mar2017	04:00	3,629	1,338.0	46.8	3,429	46.1
11Mar2017	06:00	3,555	1,359.3	46.9	3,498	46.2
11Mar2017	08:00	3,482	1,362.0	46.9	3,506	46.2
11Mar2017	10:00	3,411	1,354.2	46.9	3,482	46.2
11Mar2017	12:00	3,341	1,340.4	46.8	3,437	46.1
11Mar2017	14:00	3,272	1,323.4	46.7	3,382	46.0

Table C-27. 2017 Proposed Spillway Modification PMF Time Series Results – 620 Minute Lag Time

Date	Time	Inflow (cfs)	Storage (ac-ft)	Elevation (ft)	Outflow (cfs)	Stage (ft)
10Mar2017	00:00	12.0	590.3	40.4	774.2	40.0
10Mar2017	03:00	11.8	466.1	38.7	324.6	38.2
10Mar2017	06:00	12.0	412.3	37.9	160.1	37.3
10Mar2017	09:00	15.0	384.9	37.5	94.6	36.9
10Mar2017	12:00	140.6	381.6	37.4	87.6	36.9
10Mar2017	15:00	551.7	429.9	38.2	208.8	37.6
10Mar2017	18:00	1312.2	551.5	39.9	628.5	39.5
10Mar2017	21:00	2214.9	734.7	41.9	1317.6	41.5
11Mar2017	00:00	2800.9	927.1	43.7	2036.0	43.3
11Mar2017	03:00	2922.7	1062.4	44.8	2524.6	44.3
11Mar2017	06:00	2833.3	1122.1	45.2	2725.7	44.7
11Mar2017	09:00	2746.7	1133.3	45.3	2763.5	44.8
11Mar2017	12:00	2662.7	1123.0	45.3	2729.0	44.7
11Mar2017	15:00	2581.3	1104.3	45.1	2666.4	44.6
11Mar2017	18:00	2502.3	1082.4	45.0	2593.9	44.5

Table C-28. 2017 Proposed Spillway Modification PMF Time Series Results – 812 Minute Lag Time

Table C-29. 2017 Proposed Spillway Modifications PMF Summary

Lag Time (min.)	Peak Inflow (cfs)	Peak Outflow (cfs)	Total Inflow (in)	Total Outflow (in)	Peak Storage (ac-ft)	Peak Elevation (ft)
620	3,783	3,506	126.3	125.4	1,361.8	46.9
812	2,922.7	2,763.5	99.8	100.1	1,133.3	45.3

Table C-30. 2017 Proposed Spillway Modifications 1/2 PMF Summary

Lag Time (min.)	Peak Inflow (cfs)	Peak Outflow (cfs)	Total Inflow (in)	Total Outflow (in)	Peak Storage (ac-ft)	Peak Elevation (ft)
620	1,891	1,753	63.2	62.6	803.7	42.6
812	1,461	1,382	49.9	50.1	633.9	41.7

The 2018 HEC-HMS simulations modeled Tack Factory Pond and Reservoir Dam as a separate subbasins to evaluate the PMF conditions with the modified spillway. These simulations also

assume a starting reservoir level at maximum normal pool El. 40.4 ft. NAVD88 and that the gate fully opens for reservoir levels above the maximum normal pool and fully closes for levels below, i.e. on-off control only, no control loop. Table C-31 presents a section of the time series for the ¹/₂ PMF simulation. The ¹/₂ PMF storm has been used for 2018 modeling of the proposed spillway and dam failure analysis since this approach was found to be more conservative than the ¹/₂ PMP approach as discussed above for simulating the existing spillway configuration. The 2018 model uses a total lag time of 437 minutes watershed upstream of Reservoir Dam for the 24-hour storm duration since the Tack Factory Pond subbasin discharges directly into the Reservoir Dam impoundment.

The 2018 model simulations resulted in a 1/2 PMF peak discharge of 2,247 cfs. The 2018 analysis results in slightly higher peak discharge and reservoir level than the 2017 analysis. The 2018 model results with separate subbasins are more conservative than the 2017 model with Tack Factory Pond and Reservoir Dam combined into a single basin. The 2018 modeling determined that the maximum elevation of the Reservoir Dam impoundment during the ½ PMF would be El. 43.7 ft. NAVD88. The model results indicate that the dam embankment would not overtopped and would have 1.3 ft of freeboard without wave action. This freeboard would be adequate to prevent overtopping of the dam with a wave height associated with approximately one-half of a Category 1 hurricane minimum wind speed.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	9	579.6	40.4	10	40.4
10-Mar-17	2:00	13	579.6	40.4	13	40.4
10-Mar-17	4:00	13	579.6	40.4	13	40.4
10-Mar-17	6:00	14	579.6	40.4	14	40.4
10-Mar-17	8:00	17	579.6	40.4	17	40.4
10-Mar-17	10:00	151	579.7	40.4	113	40.4
10-Mar-17	12:00	794	580.2	40.4	745	40.4
10-Mar-17	14:00	1,109	590.1	40.5	952	40.5
10-Mar-17	16:00	1,709	645.3	41.3	1,216	41.3
10-Mar-17	18:00	1,956	708.7	42.1	1,537	42.1
10-Mar-17	20:00	2,419	790.4	43.0	1,937	43.0
10-Mar-17	20:20	2,446	803.1	43.2	2,003	43.2
10-Mar-17	20:40	2,458	814.6	43.3	2,063	43.3
10-Mar-17	21:00	2,456	824.8	43.4	2,115	43.4
10-Mar-17	21:20	2,440	833.3	43.5	2,160	43.5
10-Mar-17	21:40	2,411	840.2	43.6	2,196	43.6

Table C-31. 2018 Proposed Spillway ½ PMF Time Series Results

Technical Memorandum Proposed Spillway Design

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	22:00	2,371	845.2	43.7	2,223	43.7
10-Mar-17	22:20	2,322	848.4	43.7	2,240	43.7
10-Mar-17	22:40	2,266	849.8	43.7	2,247	43.7
10-Mar-17	23:00	2,203	849.4	43.7	2,245	43.7

TACK FACTORY POND

The results of the 2018 HEC-HMS simulations of ½ PMF conditions at Tack Factory Pond are presented in Table C-32 and Table C-33 for the existing Reservoir Dam spillway and the proposed spillway, respectively. The sections of the time series at Tack Factory Pond for the ½ PMP simulations indicate that the peak discharge at Tack Factory Pond would be 2,227 cfs for the existing conditions and 2,228 cfs for the proposed conditions. The maximum elevation of the Tack Factory Pond during the ½ PMF would be El. 44.8 ft. NAVD88 with the existing Reservoir Dam spillway and El. 44.9 ft. NAVD88 with the proposed Reservoir Dam spillway. The model results indicate that CJCH would be overtopped during the ½ PMF with both the existing and proposed Reservoir Dam spillway configurations

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	10	30.8	38.9	-	39.5
10-Mar-17	2:00	10	31.9	39.0	6	39.6
10-Mar-17	4:00	10	32.3	39.0	9	39.6
10-Mar-17	6:00	10	32.4	39.0	9	39.7
10-Mar-17	8:00	11	32.6	39.0	9	39.7
10-Mar-17	10:00	20	34.1	39.1	-	39.5
10-Mar-17	12:00	133	44.3	39.9	-	39.5
10-Mar-17	14:00	518	93.2	41.9	-	39.5
10-Mar-17	16:00	1,221	191.6	44.6	814	41.8
10-Mar-17	18:00	1,926	225.7	45.4	1,782	42.4
10-Mar-17	20:00	2,245	241.1	45.7	2,224	42.5
10-Mar-17	20:20	2,245	241.5	45.7	2,239	42.5
10-Mar-17	20:40	2,231	241.5	45.7	2,239	42.5
10-Mar-17	21:00	2,204	241.1	45.7	2,224	42.5
10-Mar-17	21:20	2,166	240.4	45.7	2,197	42.5
10-Mar-17	21:40	2,116	239.4	45.7	2,158	42.5

Technical Memorandum Proposed Spillway Design

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	22:00	2,059	238.1	45.6	2,109	42.5
11-Mar-17	0:00	1,612	223.1	45.3	1,728	42.4
11-Mar-17	2:00	1,149	197.7	44.8	1,369	42.2

Table C-33. Tack Factory Pond Proposed Conditions 1/2 PMF Time Series Results

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	10	56.3	40.4	7	40.4
10-Mar-17	2:00	10	56.3	40.4	10	40.4
10-Mar-17	4:00	10	56.3	40.4	10	40.4
10-Mar-17	6:00	10	56.3	40.4	10	40.4
10-Mar-17	8:00	11	56.3	40.4	11	40.4
10-Mar-17	10:00	20	56.4	40.4	17	40.4
10-Mar-17	12:00	133	59.6	40.5	80	40.5
10-Mar-17	14:00	518	87.6	41.6	185	41.1
10-Mar-17	16:00	1,221	153.1	43.7	943	43.2
10-Mar-17	18:00	1,926	189.6	44.6	1,712	43.6
10-Mar-17	20:00	2,245	213.7	45.1	2,181	43.8
10-Mar-17	20:20	2,245	215.1	45.1	2,209	43.8
10-Mar-17	20:40	2,231	215.7	45.1	2,222	43.8
10-Mar-17	21:00	2,204	215.6	45.1	2,220	43.8
10-Mar-17	21:20	2,166	214.9	45.1	2,205	43.8
10-Mar-17	21:40	2,116	213.5	45.1	2,177	43.8
10-Mar-17	22:00	2,059	211.5	45.1	2,138	43.8
11-Mar-17	0:00	1,612	191.9	44.6	1,758	43.7
11-Mar-17	2:00	1,149	166.3	44.1	1,306	43.4

OLD OAKEN BUCKET POND

The results of the 2018 HEC-HMS simulations of ½ PMF conditions at Old Oaken Bucket are presented in Table C-34 and Table C-35 for the existing Reservoir Dam spillway and the proposed spillway, respectively. The sections of the time series at Old Oaken Bucket for the ½ PMF simulations indicate that the peak discharge at Old Oaken Bucket would be 2,717 cfs for

the existing conditions and 2,560 cfs for the proposed conditions. The maximum elevation of the Old Oaken Bucket Pond during the ½ PMF would be El. 23.9 ft. NAVD88 with the existing Reservoir Dam spillway and El. 23.8 ft. NAVD88 with the proposed Reservoir Dam spillway. The model results indicate that Country Way would be overtopped during the ½ PMF with the existing and proposed Reservoir Dam spillway configurations.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	3	29.1	18.9	222	21.0
10-Mar-17	2:00	4	4.8	15.5	61	19.6
10-Mar-17	4:00	5	3.6	15.2	5	18.7
10-Mar-17	6:00	7	3.6	15.2	7	18.7
10-Mar-17	8:00	9	3.6	15.2	9	18.8
10-Mar-17	10:00	90	4.5	15.4	53	19.5
10-Mar-17	12:00	855	49.8	19.5	240	21.1
10-Mar-17	14:00	1,528	198.4	22.7	721	21.9
10-Mar-17	16:00	1,897	244.8	23.5	1,857	22.6
10-Mar-17	18:00	1,598	236.8	23.3	1,629	22.5
10-Mar-17	20:00	2,154	248.2	23.5	1,956	22.7
10-Mar-17	22:00	2,731	271.8	23.9	2,709	23.1
10-Mar-17	22:20	2,713	272.1	23.9	2,717	23.1
10-Mar-17	22:40	2,682	271.7	23.9	2,705	23.1
10-Mar-17	23:00	2,642	270.9	23.9	2,677	23.1
10-Mar-17	23:20	2,595	269.8	23.9	2,640	23.1
10-Mar-17	23:40	2,542	268.4	23.9	2,595	23.0
11-Mar-17	0:00	2,482	266.8	23.8	2,543	23.0
11-Mar-17	2:00	2,096	254.9	23.6	2,162	22.8

Table C-34. Old Oaken Bucket Pond Existing Conditions 1/2 PMF Time Series Results

Table C-35. Old Oaken Bucket Pond Proposed Conditions 1/2 PMF Time Series Results

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	13	29.1	18.9	222	21.0

Technical Memorandum Proposed Spillway Design

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	2:00	17	5.7	15.7	81	19.8
10-Mar-17	4:00	18	3.7	15.2	18	18.9
10-Mar-17	6:00	19	3.7	15.2	19	19.0
10-Mar-17	8:00	22	3.7	15.2	22	19.0
10-Mar-17	10:00	141	5.5	15.6	76	19.7
10-Mar-17	12:00	1,432	95.0	20.6	268	21.3
10-Mar-17	14:00	2,142	247.8	23.5	1,944	22.7
10-Mar-17	16:00	2,389	261.8	23.8	2,379	22.9
10-Mar-17	18:00	1,906	248.9	23.5	1,979	22.7
10-Mar-17	20:00	2,193	253.4	23.6	2,113	22.8
10-Mar-17	22:00	2,517	264.7	23.8	2,471	23.0
10-Mar-17	22:20	2,543	265.8	23.8	2,508	23.0
10-Mar-17	22:40	2,559	266.6	23.8	2,535	23.0
10-Mar-17	23:00	2,566	267.1	23.8	2,552	23.0
10-Mar-17	23:20	2,563	267.4	23.8	2,560	23.0
10-Mar-17	23:40	2,552	267.3	23.8	2,559	23.0
11-Mar-17	0:00	2,533	267.0	23.8	2,549	23.0
11-Mar-17	2:00	2,288	260.7	23.7	2,344	22.9

100-YEAR FLOOD

The 100-year flood was modeled using NOAA Atlas 14 point precipitation data for the Hingham, MA station; up to a 4-day event. Peak intensity was 5 minutes in duration at a position of 50 percent.

TACK FACTORY POND

The results of the 2018 HEC-HMS simulations of 100-year flood conditions at Tack Factory Pond are presented in Table C-36 and Table C-37 for the existing Reservoir Dam spillway and the proposed spillway, respectively. The sections of the time series at Tack Factory Pond for the 100-year flood simulations indicate that the peak discharge at Tack Factory Pond would be 1,023 cfs for the existing conditions and 1,023 cfs for the proposed conditions. The maximum elevation of the Tack Factory Pond during the 100-year flood would be El. 44 ft. NAVD88 with the existing Reservoir Dam spillway and El. 43.7 ft. NAVD88 with the proposed Reservoir Dam spillway. The model results indicate that CJCH would be overtopped during the 100-year flood

with the existing and proposed Reservoir Dam spillway configurations. The FEMA 100-year flood level upstream of Tack Factory Pond is El. 44.0 ft NAVD88.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	10	30.8	38.9	-	39.5
10-Mar-17	6:00	10	32.2	39.0	9	39.7
10-Mar-17	12:00	9	32.3	39.0	10	39.7
10-Mar-17	18:00	9	32.2	39.0	9	39.7
11-Mar-17	0:00	9	32.2	39.0	9	39.6
11-Mar-17	6:00	9	32.3	39.0	8	39.6
11-Mar-17	12:00	18	33.7	39.1	12	39.7
11-Mar-17	18:00	48	38.5	39.4	33	40.0
12-Mar-17	0:00	137	56.0	40.4	24	39.9
12-Mar-17	6:00	937	151.9	43.7	835	41.8
12-Mar-17	7:00	1,012	158.2	43.9	958	41.9
12-Mar-17	7:20	1,024	159.5	43.9	984	41.9
12-Mar-17	7:40	1,032	160.5	43.9	1,002	41.9
12-Mar-17	8:00	1,034	161.2	43.9	1,014	41.9
12-Mar-17	8:20	1,030	161.6	44.0	1,021	41.9
12-Mar-17	8:40	1,019	161.6	44.0	1,023	41.9
12-Mar-17	9:00	1,005	161.4	44.0	1,019	41.9
12-Mar-17	12:00	750	150.7	43.6	815	41.8
12-Mar-17	18:00	366	124.7	42.8	407	41.4

Table C-36. Tack Factory Pond Existing Conditions 100-year Flood Time Series Results

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	10	56.3	40.4	7	40.4
10-Mar-17	6:00	10	56.3	40.4	10	40.4
10-Mar-17	12:00	9	56.3	40.4	9	40.4
10-Mar-17	18:00	9	56.3	40.4	9	40.4
11-Mar-17	0:00	9	56.3	40.4	9	40.4
11-Mar-17	6:00	9	56.3	40.4	9	40.4
11-Mar-17	12:00	18	56.4	40.4	17	40.4
11-Mar-17	18:00	48	57.2	40.4	44	40.5
12-Mar-17	0:00	137	62.2	40.6	110	40.7
12-Mar-17	6:00	937	141.4	43.4	822	43.1
12-Mar-17	7:00	1,012	148.5	43.6	954	43.2
12-Mar-17	7:20	1,024	149.9	43.6	982	43.2
12-Mar-17	7:40	1,032	150.9	43.6	1,002	43.2
12-Mar-17	8:00	1,034	151.5	43.7	1,015	43.2
12-Mar-17	8:20	1,030	151.9	43.7	1,023	43.2
12-Mar-17	8:40	1,019	151.9	43.7	1,023	43.2
12-Mar-17	9:00	1,005	151.7	43.7	1,019	43.2
12-Mar-17	12:00	750	141.1	43.3	817	43.1
12-Mar-17	18:00	366	116.5	42.6	405	42.6

Table C-37. Tack Factory Pond Proposed Conditions 100-Year Flood Time Series Results

RESERVOIR **D**AM

The results of the 2018 HEC-HMS simulations of 100-year flood conditions at Reservoir Dam are presented in Table C-38 and Table C-39 for the existing Reservoir Dam spillway and the proposed spillway, respectively. The sections of the time series for the 100-year flood simulations indicate that the peak discharge at the Reservoir Dam spillway would be 1,031 cfs for the existing conditions and 1,115 cfs for the proposed conditions. The maximum elevation of the Reservoir Dam impoundment during the 100-year flood would be El. 43.6 ft. NAVD88 with the existing Reservoir Dam spillway and El. 41.0 ft. NAVD88 with the proposed Reservoir Dam spillway. The model results indicate that Reservoir Dam would not be overtopped during the 100-year flood with either the existing or proposed spillway. The 100-year flood level with proposed spillway would be El. 41.0 ft. NAVD88 with 4 ft of freeboard on the Dam embankment. The FEMA 100-year flood level upstream of the Reservoir Dam spillway is El. 42.0 ft NAVD88.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	2	476.6	38.9	-	38.9
11-Mar-17	0:00	11	490.5	39.1	8	39.0
12-Mar-17	0:00	218	538.6	39.8	80	39.6
12-Mar-17	6:00	1,012	712.1	42.1	562	41.7
12-Mar-17	7:00	1,133	749.5	42.6	690	42.2
12-Mar-17	8:00	1,187	783.5	43.0	816	42.5
12-Mar-17	8:20	1,194	793.3	43.1	854	42.7
12-Mar-17	8:40	1,195	802.2	43.2	889	42.8
12-Mar-17	9:00	1,190	810.1	43.3	920	42.9
12-Mar-17	9:20	1,181	817.0	43.4	948	42.9
12-Mar-17	9:40	1,168	822.9	43.4	972	43.0
12-Mar-17	10:00	1,150	827.8	43.5	992	43.1
12-Mar-17	10:20	1,128	831.6	43.5	1,008	43.1
12-Mar-17	10:40	1,104	834.5	43.6	1,020	43.1
12-Mar-17	11:00	1,077	836.3	43.6	1,027	43.2
12-Mar-17	11:20	1,048	837.2	43.6	1,031	43.2
12-Mar-17	11:40	1,015	837.2	43.6	1,031	43.2
12-Mar-17	12:00	982	836.4	43.6	1,028	43.2
12-Mar-17	18:00	563	760.9	42.7	731	42.3

Table C-38. Reservoir Dam Existing Conditions 100-Year Flood Time Series Results

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	9	579.6	40.4	10	40.4
11-Mar-17	0:00	11	579.6	40.4	11	40.4
12-Mar-17	0:00	304	579.8	40.4	277	40.4
12-Mar-17	6:00	999	582.4	40.4	915	40.4
12-Mar-17	7:00	1,130	593.2	40.6	967	40.6
12-Mar-17	8:00	1,189	606.9	40.8	1,030	40.8
12-Mar-17	8:20	1,195	611.0	40.8	1,050	40.8
12-Mar-17	8:40	1,196	614.8	40.9	1,067	40.9
12-Mar-17	9:00	1,190	618.1	40.9	1,083	40.9
12-Mar-17	9:20	1,180	620.7	40.9	1,096	40.9
12-Mar-17	9:40	1,166	622.7	41.0	1,105	41.0
12-Mar-17	10:00	1,148	624.0	41.0	1,112	41.0
12-Mar-17	10:20	1,127	624.7	41.0	1,115	41.0
12-Mar-17	10:40	1,103	624.7	41.0	1,115	41.0
12-Mar-17	11:00	1,077	624.0	41.0	1,112	41.0
12-Mar-17	11:20	1,048	622.8	41.0	1,106	41.0
12-Mar-17	11:40	1,016	620.9	40.9	1,096	40.9
12-Mar-17	12:00	983	618.4	40.9	1,084	40.9
12-Mar-17	18:00	561	580.1	40.4	560	40.4

Table C-39. Reservoir Dam Proposed Conditions 100-year Flood Time Series Results

OLD OAKEN BUCKET POND

The results of the 2018 HEC-HMS simulations of 100-year flood conditions at Old Oaken Bucket are presented in Table C-40 and

Table C-41 for the existing Reservoir Dam spillway and the proposed spillway, respectively. The sections of the time series at Old Oaken Bucket for the 100-year flood simulations indicate that the peak discharge at Old Oaken Bucket would be 1,222 cfs for the existing conditions and 1,308 cfs for the proposed conditions. The maximum elevation of the Old Oaken Bucket Pond during the 100-year flood would be El. 23.1 ft. NAVD88 with the existing Reservoir Dam spillway and with the proposed Reservoir Dam spillway. Country Way with the minimum road surface at El. 22.1 ft would be overtopped during the 100-year flood with the existing and proposed Reservoir Dam spillway configurations. The FEMA 100-year flood level upstream of the Old Oaken Bucket Pond dam is El. 17.5 ft NAVD88.

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	3	29.1	18.9	222	21.0
11-Mar-17	0:00	11	3.6	15.2	11	18.8
12-Mar-17	0:00	267	15.2	17.2	162	20.5
12-Mar-17	6:00	727	195.8	22.6	673	21.8
12-Mar-17	7:00	849	201.2	22.7	775	21.9
12-Mar-17	8:00	975	207.3	22.8	902	22.0
12-Mar-17	9:00	1,087	213.0	22.9	1,026	22.1
12-Mar-17	10:00	1,169	217.3	23.0	1,126	22.2
12-Mar-17	11:00	1,215	220.0	23.0	1,192	22.2
12-Mar-17	11:20	1,222	220.6	23.0	1,205	22.2
12-Mar-17	11:40	1,226	221.0	23.1	1,215	22.2
12-Mar-17	12:00	1,225	221.2	23.1	1,220	22.2
12-Mar-17	12:20	1,221	221.3	23.1	1,222	22.2
12-Mar-17	12:40	1,214	221.2	23.1	1,219	22.2
12-Mar-17	13:00	1,203	220.9	23.0	1,214	22.2
12-Mar-17	13:20	1,191	220.6	23.0	1,205	22.2
12-Mar-17	13:40	1,176	220.1	23.0	1,194	22.2
12-Mar-17	18:00	931	210.1	22.9	962	22.0

Table C-40. Old Oaken Bucket Pond Existing Conditions 100-year Flood Time Series Results

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
10-Mar-17	0:00	13	29.1	18.9	222	21.0
11-Mar-17	0:00	14	3.7	15.2	14	18.9
12-Mar-17	0:00	427	31.5	19.0	224	21.0
12-Mar-17	0:20	552	38.8	19.2	231	21.0
12-Mar-17	0:40	762	50.4	19.5	240	21.1
12-Mar-17	1:00	1,072	68.8	20.0	252	21.2
12-Mar-17	1:20	1,412	95.9	20.6	269	21.3
12-Mar-17	1:40	1,635	130.2	21.4	287	21.4
12-Mar-17	2:00	1,721	168.2	22.1	314	21.4
12-Mar-17	2:20	1,612	199.9	22.7	750	21.9
12-Mar-17	2:40	1,443	216.2	23.0	1,100	22.2
12-Mar-17	11:00	1,311	224.7	23.1	1,307	22.3
12-Mar-17	11:20	1,307	224.7	23.1	1,308	22.3
12-Mar-17	11:40	1,301	224.6	23.1	1,306	22.3
12-Mar-17	12:00	1,291	224.4	23.1	1,301	22.3
12-Mar-17	12:20	1,278	224.1	23.1	1,292	22.3
12-Mar-17	12:40	1,263	223.6	23.1	1,281	22.3
12-Mar-17	18:00	760	201.9	22.7	790	21.9

Table C-41. Old Oaken Bucket Pond Proposed Conditions 100-year Flood Time Series Results

2014 DAM FAILURE ANALYSIS

The Town's Emergency Action Plan (EAP) dated January 2014 considered failure of Reservoir Dam. However, ODS requested the Town to consider a multiple dam failure scenario with Old Oaken Bucket Dam failing subsequently to Reservoir Dam and incorporate the analysis results and a new inundation map into the EAP for the dams. The preliminary design completed in 2014 included a multiple dam failure analyses for "sunny day" and ½ PMF initial conditions and the results were included in the Preliminary Design Memorandum for the Reservoir Dam Fish Passage Project (Tetra Tech 2014). The analysis was a simplified analysis of multiple dam failure of Old Oaken Bucket Dam. Assumptions for the 2014 analysis were:

1. There are no changes to EAP flood levels and breach flows at Old Oaken Bucket Dam and upstream of Country Way for both the Sunny Day and ½ PMF failure scenarios.

- 2. Country Way is an integral part of Old Oaken Bucket Dam and the twin stone culverts are the primary outlet. The culverts have a discharge capacity of approximately 300 cfs without overtopping Country Way.
- 3. Instantaneous failure of a 14 ft wide by 12 ft deep section of Country Way at the twin stone culverts. This breach represents the width and depth of the culverts and is the weakest point where a sudden failure could occur in the dam. Failure of Old Oaken Bucket Dam/Country Way occurs when the flood wave (peak breach flow and maximum water elevation) resulting from failure Reservoir Dam arrive at Old Oaken Bucket Dam/Country Way.
- 4. Culverts under Driftway have minimal discharge capacity and flood levels at Drift Way are controlled by the highway profile.
- 5. No attenuation of the peak breach flow downstream of Old Oaken Bucket Dam/Country Way to the limits of the analysis at the North River, i.e., peak breach flow at the North River is the same as peak breach flow at Old Oaken Bucket/Country Way.

The analysis indicated that peak flood levels with multiple dam failure would be 1.9 ft. higher at Country Way and 0.5 ft. higher at Driftway Road than the peak flood levels with single dam failure. The results of the multiple failure analysis are presented in Table C-42. The river mile references in the table are relative to the distance downstream from Reservoir Dam.

Peak flood levels at Country Way for the multiple dam failure analysis would be higher than single failure of Reservoir Dam because of the assumption that Country Way controls water levels in Old Oaken Bucket and that Country Way would be overtopped at river flows greater than 300 cfs. Downstream at Driftway Road and the North River, flood levels with multiple dam failure would be less than 0.5 ft higher than single dam failure.

An inundation map for First Herring Brook reflecting the 2014 simplified multiple dam failure analysis is provided in Appendix E of the 2014 Preliminary Design Report.

	Sunny Day F	ailure	½ PMF Failu	ıre
	Single Dam	Multiple Dam	Single Dam	Multiple Dam
Reservoir Dam (River Mile 0.0)				
Maximum Breach Flow (cfs)	3,950	3,950	9,250	9,250
Peak Flood Level (ft NAVD88)	38.9	38.9	42.9	42.9
Toe of Dam (River Mile 0.01)	·			
Maximum Breach Flow (cfs)	3,950	3,950	9,250	9,250
Peak Flood Level (ft NAVD88)	32.4	32.4	34.8	34.8
First Herring Brook (River Mile 0.36)	•	•		•
Maximum Breach Flow (cfs)	3,350	3,350	7,900	7,900
Peak Flood Level (ft NAVD88)	23.3	23.3	25.3	25.3
Country Way (River Mile 0.69)				
Maximum Breach Flow (cfs)	2,725	3,700	6,830	8,405
Peak Flood Level (ft NAVD88)	22.4	23.7	23.7	25.6
Driftway Road (River Mile 0.81)	•	•	-	
Maximum Breach Flow (cfs)	2,230	3,700	6,825	8,405
Peak Flood Level (ft NAVD88)	13.0	13.4	15.0	15.2
Downstream Flood Plain (River Mile 1.	16)		•	
Maximum Breach Flow (cfs)	2,190	3,700	6,825	8,405
Peak Flood Level (ft NAVD88)	0.0	2.8	9.1	9.4
North River (River Mile 1.8)	•	•	•	•
Maximum Breach Flow (cfs)	2,100	3,700	6,825	8,405
Peak Flood Level (ft NAVD88)	0.0	2.7	9.1	9.3

Table C-42. 2014 Reservoir Dam Failure Analysis

HEC-HMS DAM FAILURE ANALYSIS

The HEC-HMS model was used to conduct a multiple dam failure analyses for "sunny day" and ¹/₂ PMF initial conditions to verify the results of the simplified analysis presented in the 2014 Preliminary Design Report. A summary of the assumptions and results of the analysis are presented in the following sections.

FAILURE SCENARIOS

Ten scenarios were investigated, seven with single failure of Reservoir Dam and three with multiple failures of Reservoir Dam and Tack Factory Pond. The Reservoir Dam single failure analysis included five scenarios for the ½ PMF flood condition, three with an overtopping breach and two with a piping breach. The analysis included two "sunny day" scenarios with single failure of Reservoir Dam, one with an overtopping breach and one with a piping breach.

A summary of the model input parameters for the single failure analysis of the existing Reservoir Dam is presented in Table C-43 for the ½ PMF flood conditions. Scenarios 1A, 1B, and 1C investigates the effects of the breach development time (2 hours, 6 hours, 0.25 hours, respectively) on peak failure discharge with an overtopping breach of Reservoir Dam. Scenario 2 investigates the effects of the breach bottom width (100 ft versus 200 ft) on peak discharge with an overtopping breach. The breach bottom El. 43.9 ft is the top elevation of the existing concrete core wall. Scenarios 3 simulates embankment piping breaches with a breach bottom elevation at the approximate elevation of erodible material (El. 41.5 ft) in the dam abutments at the end of the concrete core wall.

Model input parameters for the single failure of the proposed Reservoir Dam modifications for the ½ PMF flood and Sunny Day conditions are summarized in Table C-44. Scenario 4 simulates an embankment piping breach above the Reservoir Dam concrete core wall (El. 43.9 ft). Scenarios 5 and 6 simulate failure of the proposed spillway gate during ½ PMF flood and Sunny Day conditions, respectively. Scenario 7 simulates a Sunny Day piping failure of the Reservoir Dam abutment to the bottom of the concrete core wall (El. 36.1 ft).

Model input parameters for the multiple dam failure scenarios with proposed spillway and the ¹/₂ PMF flood and Sunny Day conditions are summarized in Table C-45. Scenario 8 models overtopping of the Reservoir Dam with the proposed modifications during a ¹/₂ PMF event followed by overtopping failure of Old Oaken Bucket Pond Dam. Scenario 9 simulates failure of the proposed Reservoir Dam spillway gate during the ¹/₂ PMF flood followed by overtopping failure of the proposed Reservoir Dam. Scenario 10 represents a Sunny Day failure of the proposed Reservoir Dam spillway gate followed by overtopping failure of the multiple dam failure parameters are the same as Scenarios 4, 5, and 6 for the multiple dam failure Scenarios 8, 9, and 10, respectively.

Table C-43. Existing Reservoir Dam Failure Assumptions with 1/2 PMF Flood Conditions
(Scenarios 1-3)

Parameter	Scenario 1A	Scenario 1B	Scenario 1C	Scenario 2	Scenario 3
Failure Description	Single Reservoir Dam Embankment Overtopping Erosion	Single Reservoir Dam Embankment Overtopping Erosion	Single Reservoir Dam Embankment Overtopping Erosion	Single Reservoir Dam Embankment Overtopping Erosion	Single Reservoir Dam Abutment Piping Erosion
Rainfall Event	1/2 PMF	1/2 PMF	1/2 PMF	1/2 PMF	1/2 PMF
Basin Name	Existing Scenario 1A	Existing Scenario 1B	Existing Scenario 1C	Existing Scenario 2	Existing Scenario 3
Element Name	Reservoir Dam	Reservoir Dam	Reservoir Dam	Reservoir Dam	Reservoir Dam
Method of Failure	Overtop Breach	Overtop Breach	Overtop Breach	Overtop Breach	Piping Breach
Direction	Main	Main	Main	Main	Main
Top Elevation (ft NAVD88)	45.0	45.0	45.0	45.0	45.0
Bottom Elevation (ft NAVD88)	43.9	43.9	43.9	43.9	41.5
Bottom Width (ft)	200	200	200	100	25
Left Slope (xH:1V)	1	1	1	1	1
Right Slope (xH:1V)	1	1	1	1	1
Piping Elevation (ft NAVD88)	n/a	n/a	n/a	n/a	43.5
Piping Coefficient	n/a	n/a	n/a	n/a	0.8
Development Time (HR)	2	6	0.25	2	0.25
Trigger Method	Elevation	Elevation	Elevation	Elevation	Elevation
Trigger Elevation (ft NAVD88)	45.0	45.0	45.0	45.0	45.0
Trigger Duration (HR)	n/a	n/a	n/a	n/a	n/a
Progression Method	linear	linear	linear	linear	linear

Technical Memorandum Proposed Spillway Design

Table C-44. Proposed Reservoir Dam Failure Assumptions with ½ PMF Flood and Sunny DayConditions (Scenarios 4-7)

Parameter	Scenario 4	Scenario 5	Scenario 6	Scenario 7
Failure Description	Single Reservoir Dam Abutment Piping Erosion	Single Reservoir Dam Spillway Gate Failure	Single Reservoir Dam Spillway Gate Failure	Single Reservoir Dam Abutment Piping Erosion
Rainfall Event	1/2 PMF	1/2 PMF	Sunny Day	Sunny Day
Basin Name	Proposed Scenario 4	Proposed Scenario 5	Proposed Scenario 6	Proposed Scenario 7
Element Name	Reservoir Dam	Reservoir Dam	Reservoir Dam	Reservoir Dam
Method of Failure	Piping Breach	Overtop Breach	Overtop Breach	Piping Breach
Direction	Main	Main	Main	Main
Top Elevation (ft NAVD88)	45.0	40.4	40.4	40.4
Bottom Elevation (ft NAVD88)	43.9	36.4	36.4	36.4
Bottom Width (ft)	25	36.6	36.6	36.6
Left Slope (xH:1V)	1	0.1	0.1	0.1
Right Slope (xH:1V)	1	0.1	0.1	0.1
Piping Elevation (ft NAVD88)	39.1	n/a	n/a	39.1
Piping Coefficient	0.8	n/a	n/a	0.8
Development Time (HR)	0.25	0.08	0.08	0.25
Trigger Method	Elevation	Elevation	Elevation	Elevation
Trigger Elevation (ft NAVD88)	43.5 (just below Peak Elevation 1/2 PMF no failure)	43.5 (just below Peak Elevation 1/2 PMF no failure)	40.40	40.39
Trigger Duration (HR)	n/a	n/a	n/a	n/a
Progression Method	linear	linear	linear	linear

Table C-45. Existing and Proposed Multiple Dam Failure Assumptions with ½ PMF Flood and
Sunny Day Conditions (Scenarios 8-10)

Technical Memorandum Proposed Spillway Design

Parameter	Scenario 8	Scenario 9	Scenario 10
Reservoir Dam Failure Description	Scenario 4	Scenario 5	Scenario 6
Old Oaken Bucket Failure Description	Multiple Dam Embankment Overtopping Erosion	Multiple Dam Spillway Gate Failure	Multiple Dam Spillway Gate Failure
Rainfall Event	1/2 PMF	1/2 PMF	Sunny Day
Basin Name	Existing Scenario 8	Proposed Scenario 9	Proposed Scenario 10
Element Name	Reservoir Dam	Reservoir Dam	Reservoir Dam
Method of Failure	Overtop Breach	Overtop Breach	Piping Breach
Direction	Main	Main	Main
Top Elevation (ft NAVD88)	21.3	21.3	21.3
Bottom Elevation (ft NAVD88)	12.45 (streambed at toe of dam per dam safety inspection report	12.45	12.45
Bottom Width (ft)	200	200	200
Left Slope (xH:1V)	1	1	1
Right Slope (xH:1V)	1	1	1
Piping Elevation (ft NAVD88)	n/a	n/a	n/a
Piping Coefficient	n/a	n/a	n/a
Development Time (HR)	2	2	2
Trigger Method	Elevation	Elevation	Elevation
Trigger Elevation (ft NAVD88)	22.6	22.6	22.6
Trigger Duration (HR)	n/a	n/a	n/a
Progression Method	linear	linear	linear

The ½ PMF scenarios simulate failure with the ½ PMP rainfall as described above. The "Sunny Day" failure scenarios assume no rainfall with a base flow of 12 cfs discharged through the Reservoir Dam low-level outlet.

Overtopping breach scenarios for the existing Reservoir Dam spillway assume the breach is initiated when water levels reach the top of the embankment. Bottom of breach at top of core wall. A two hour breach development time were selected as reasonable approximation of the embankment erosion of the stone armored upstream slope and grass covered downstream slope to reach the concrete core wall at Reservoir Dam and extend over a 200 ft breach width (1.6 minute per lineal ft of breach). To verify that this approximation is conservative, breach development times of 6 hours and 15 minutes (0.6 linear ft and 13.3 linear ft per minute, respectively) for a 200 ft breach.

The abutment piping breach assumes the breach is initiated Abutment piping breach development time of 15 minutes was selected as a conservative failure time for a breach to form. The abutments at the end of the embankment concrete core wall have a upward slope (10% or flatter) and an abutment piping breach would be at least 30 ft long. A faster breach development time would be unlikely in the vegetated abutment and glacial till material.

SINGLE DAM FAILURE

The results of the single failure scenarios for the existing Reservoir Dam during the ½ PMF event are summarized in Table C-46. Time series results are presented in Table C-47, Table C-48, Table C-49, Table C-50, and Table C-51. A comparison of the Scenarios 1A, 1B, and 1C indicates that a 2 hour development time of a 200 ft breach of the Reservoir Dam embankment provides a conservative simulation of peak flood discharge (2,838 cfs) for a 1/2 PMF single dam failure. The Reservoir Dam embankment would be overtopped with all three scenarios with peak flood levels at El. 45.5 ft. The 0.25 and 6 hour breach development times both result is slightly lower peak discharges from Reservoir Dam than the 2 hour breach because of the offset between the peak inflow time and the full breach time. When the full breach occurs prior to the peak inflow, the breach releases storage lowering water level resulting in a reduced peak discharge. With the longer 6 hours breach development time, the peak inflow occurs prior to the full breach and the full breach occurs when inflow is decreasing, which also reduces the peak discharge.

The results for Scenarios 1A and 2 indicate that a longer breach results in a slightly more conservative peak discharge. The Scenario 3 gate failure has lower peak outflow form Reservoir Dam and with slightly lower peak reservoir levels than the 200 ft long embankment breach (Scenario 1A).

All single Reservoir Dam failure scenarios result in peak discharge at Old Oaken Bucket Pond greater than 2,750 cfs with peak ½ PMF levels at least 2.7 ff higher than Country Way. Flood levels over County Way would be 0.7 ft higher with a Reservoir Dam failure than the no failure scenarios for the existing dam.

Table C-46. Existing Reservoir Dam Failure Results during ½ PMF Flood Conditions(Scenarios 1-3)

	Single Dam Failure Existing Scenario 1A 1/2 PMF Overtop	Single Dam Failure Existing Scenario 1B 1/2 PMF Overtop	Single Dam Failure Existing Scenario 1C 1/2 PMF Overtop	Single Dam Failure Existing Scenario 2 1/2 PMF Overtop	Single Dam Failure Existing Scenario 3 1/2 PMF Piping	
Parameter	Erosion	Erosion	Erosion	Erosion	Erosion	
I	ack Factory P	ond				
Peak elevation (ft. NAVD88)	45.7	45.7	45.7	45.7	45.7	
Peak Outflow (cfs)	2,239	2,239	2,239	2,239	2,239	
	leservoir Dam	a/				
Peak elevation (ft. NAVD88)	45.4	45.5	45.2	45.5	45.2	
Peak Outflow (cfs)	2,838	2,485	2,464	2,658	2,439	
	old Oaken Buc	ket				
Peak elevation (ft. NAVD88)	24.1	24.0	24.0	24.0	23.9	
Peak Outflow (cfs)	3,038	2,792	2,777	2,902	2,754	
Notes: a/ In general peak elevations occurred either 20-40 minutes prior to peak outflows (breach), or at the same time (gate failure)						

		Old	Oaken Bucket Po	ond		
Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
Reservoir D	am - Peak El	evation and Di	ischarge			
10-Mar-17	20:00	2,462	1,008.0	45.4	2,143	45.3
10-Mar-17	20:20	2,476	1,013.4	45.4	2,398	45.5
10-Mar-17	20:40	2,475	1,012.8	45.4	2,598	45.5
10-Mar-17	21:00	2,460	1,007.2	45.4	2,741	45.6
10-Mar-17	21:20	2,432	997.7	45.3	2,838	45.6
10-Mar-17	21:40	2,392	988.9	45.2	2,626	45.6
10-Mar-17	22:00	2,342	983.4	45.1	2,505	45.5
Old Oaken I	Bucket Pond	- Peak Elevati	on and Discharg	je		
10-Mar-17	21:00	2,914	270.2	23.9	2,654	23.1
10-Mar-17	21:20	3,058	276.4	24.0	2,866	23.2
10-Mar-17	21:40	3,157	281.1	24.1	3,009	23.2
10-Mar-17	22:00	2,959	282.1	24.1	3,038	23.3
10-Mar-17	22:20	2,833	279.3	24.0	2,954	23.2
10-Mar-17	22:40	2,746	276.1	24.0	2,856	23.2
10-Mar-17	23:00	2,679	273.4	24.0	2,764	23.1

Table C-47. Dam Failure Scenario 1A Peak Elevation and Discharges for Reservoir Dam andOld Oaken Bucket Pond

Table C-48. Dam Failure Scenario 1B Peak Elevation and Discharges for Reservoir Dam and									
Old Oaken Bucket Pond									
			<u>a</u> .	,					

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)			
Reservoir D	Reservoir Dam - Peak Elevation and Discharge								
10-Mar-17	20:00	2,462	1,009.5	45.4	2,064	45.2			
10-Mar-17	20:20	2,476	1,018.2	45.5	2,242	45.4			
10-Mar-17	20:40	2,475	1,023.0	45.5	2,365	45.5			
10-Mar-17	21:00	2,460	1,024.8	45.5	2,439	45.5			
10-Mar-17	21:20	2,432	1,024.5	45.5	2,476	45.5			
10-Mar-17	21:40	2,392	1,022.6	45.5	2,485	45.5			
10-Mar-17	22:00	2,342	1,019.5	45.5	2,472	45.5			
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	e					
10-Mar-17	21:00	2,684	266.0	23.8	2,514	23.0			
10-Mar-17	21:20	2,760	269.9	23.9	2,645	23.1			
10-Mar-17	21:40	2,798	272.4	23.9	2,730	23.1			
10-Mar-17	22:00	2,807	273.8	24.0	2,776	23.1			
10-Mar-17	22:20	2,794	274.2	24.0	2,792	23.1			
10-Mar-17	22:40	2,767	274.0	24.0	2,784	23.1			
10-Mar-17	23:00	2,732	273.4	23.9	2,762	23.1			

Table C-49. Dam Failure Scen	ario 1C Peak Ele	wation and Disci	harges for Re	servoir Dam and
	Old Oaken B	ucket Pond		

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
Reservoir D	am - Peak El	evation and Di	scharge			
10-Mar-17	20:00	2,462	979.6	45.1	2,427	45.5
10-Mar-17	20:20	2,476	980.5	45.1	2,445	45.5
10-Mar-17	20:40	2,475	981.2	45.1	2,458	45.5
10-Mar-17	21:00	2,460	981.4	45.1	2,462	45.5
10-Mar-17	21:20	2,432	981.0	45.1	2,455	45.5
10-Mar-17	21:40	2,392	980.1	45.1	2,436	45.5
10-Mar-17	22:00	2,342	978.6	45.1	2,407	45.5
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	je		
10-Mar-17	21:00	2,784	272.5	23.9	2,732	23.1
10-Mar-17	21:20	2,787	273.5	24.0	2,766	23.1
10-Mar-17	21:40	2,779	273.8	24.0	2,777	23.1
10-Mar-17	22:00	2,760	273.7	24.0	2,772	23.1
10-Mar-17	22:20	2,729	273.2	23.9	2,754	23.1
10-Mar-17	22:40	2,691	272.3	23.9	2,726	23.1
10-Mar-17	23:00	2,649	271.3	23.9	2,691	23.1

Table C-50. Dam Failure Scenario 2 Peak Elevation and Discharges for Reservoir Dam and Old
Oaken Bucket Pond

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)			
Reservoir D	Reservoir Dam - Peak Elevation and Discharge								
10-Mar-17	20:00	2,462	1,008.9	45.4	2,096	45.3			
10-Mar-17	20:20	2,476	1,016.2	45.4	2,307	45.4			
10-Mar-17	20:40	2,475	1,018.6	45.5	2,469	45.5			
10-Mar-17	21:00	2,460	1,017.0	45.5	2,583	45.5			
10-Mar-17	21:20	2,432	1,012.2	45.4	2,658	45.6			
10-Mar-17	21:40	2,392	1,007.0	45.4	2,543	45.5			
10-Mar-17	22:00	2,342	1,003.3	45.3	2,463	45.5			
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	je					
10-Mar-17	21:00	2,787	267.9	23.9	2,577	23.0			
10-Mar-17	21:20	2,902	272.9	23.9	2,746	23.1			
10-Mar-17	21:40	2,978	276.5	24.0	2,869	23.2			
10-Mar-17	22:00	2,871	277.6	24.0	2,902	23.2			
10-Mar-17	22:20	2,789	276.2	24.0	2,859	23.2			
10-Mar-17	22:40	2,722	274.3	24.0	2,792	23.1			
10-Mar-17	23:00	2,663	272.4	23.9	2,728	23.1			

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)			
Reservoir D	Reservoir Dam - Peak Elevation and Discharge								
10-Mar-17	20:00	2,462	985.6	45.1	2,351	45.4			
10-Mar-17	20:20	2,476	988.3	45.2	2,389	45.5			
10-Mar-17	20:40	2,475	990.3	45.2	2,419	45.5			
10-Mar-17	21:00	2,460	991.4	45.2	2,436	45.5			
10-Mar-17	21:20	2,432	991.6	45.2	2,439	45.5			
10-Mar-17	21:40	2,392	991.0	45.2	2,430	45.5			
10-Mar-17	22:00	2,342	989.6	45.2	2,408	45.5			
Old Oaken I	Bucket Pond	- Peak Elevation	on and Discharg	e					
10-Mar-17	21:00	2,743	270.8	23.9	2,676	23.1			
10-Mar-17	21:20	2,759	272.3	23.9	2,724	23.1			
10-Mar-17	21:40	2,762	272.9	23.9	2,747	23.1			
10-Mar-17	22:00	2,753	273.1	23.9	2,754	23.1			
10-Mar-17	22:20	2,730	272.9	23.9	2,746	23.1			
10-Mar-17	22:40	2,699	272.3	23.9	2,726	23.1			
10-Mar-17	23:00	2,662	271.5	23.9	2,697	23.1			

Table C-51. Dam Failure Scenario 3 Peak Elevation and Discharges for Reservoir Dam and OldOaken Bucket Pond

Table C-52 shows that the Reservoir Dam peak discharge and elevation for the single failure Scenarios 4 and 5 during the ½ PMF are lower than the existing Reservoir Dam non-failure Scenario 1. Both the piping and gate failure scenarios would have approximately 2,220 cfs peak outflow from Reservoir Dam with a peak flood level at El. 43.7 ft, both less than the existing spillway simulations. Peak outflow at Old Oaken Bucket Pond would be approximately 2,569 cfs for a single Reservoir Dam failure with a peak flood level at El. 23.8 ft (2.6 ft above the low point in Country Way). Time series results for these simulations are presented in Table C-53, Table C-54, Table C-55, and Table C-56.

Scenario 6 sunny day embankment erosion failure and Scenario 7 sunny day gate failure of Reservoir Dam result in peak discharges from Reservoir that raise Old Oaken Bucket Pond to levels that are 2.6 ft and 1.8 ft above the spillway crest (EL. 18.6 ft NAVD88, respectively. Maximum peak flood level with a sunny date failure of the proposed Reservoir Dam spillway gate would result in a maximum Old Oaken Bucket Pond level equal to the low point in Country Way (El. 21.2 ft).

	Single Dam Failure Proposed	Single Dam Failure Proposed	Single Dam Failure Proposed	Single Dam Failure Proposed			
	Scenario 4 1/2 PMF	Scenario 5 1/2 PMF Gate	Scenario 6 Sunny Day	Scenario 7 Sunny Day			
Parameter	Piping Erosion	Failure	Gate Failure	Piping Erosion			
Tack Factory Pond							
Peak elevation (ft. NAVD88)	45.1	45.1	40.4	40.4			
Peak Outflow (cfs)	2,222	2,222	10	10			
Reservoir Dam a/							
Peak elevation (ft. NAVD88)	43.7 b/	43.7	40.4	40.4			
Peak Outflow (cfs)	2247 b/	2,235	905	801			
Old Oaken Bucket							
Peak elevation (ft. NAVD88)	23.8	23.8	21.2	20.4			
Peak Outflow (cfs)	2,560	2,548	283	263			
Notes: a/ In general peak elevations occurred either 20-40 minutes prior to peak outflows (breach), or at the same time (gate failure)							

 Table C-52. Proposed Reservoir Dam Failure Results with ½ PMF Flood and Sunny Day

 Conditions (scenarios 4-7)

b/ b/ no breach occurred (Peak elevation did not reach the modeled breach threshold)

Table C-53. Dam Failure Scenario 4 Peak Elevation and Discharges for Reservoir Dam and Old
Oaken Bucket Pond

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)			
Reservoir D	Reservoir Dam - Peak Elevation and Discharge								
10-Mar-17	21:00	2,456	824.8	43.4	2,115	43.4			
10-Mar-17	21:20	2,440	833.3	43.5	2,160	43.5			
10-Mar-17	21:40	2,411	840.2	43.6	2,196	43.6			
10-Mar-17	22:00	2,371	845.2	43.7	2,223	43.7			
10-Mar-17	22:20	2,322	848.4	43.7	2,240	43.7			
10-Mar-17	22:40	2,266	849.8	43.7	2,247	43.7			
10-Mar-17	23:00	2,203	849.4	43.7	2,245	43.7			
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	je					
10-Mar-17	22:00	2,517	264.7	23.8	2,471	23.0			
10-Mar-17	22:20	2,543	265.8	23.8	2,508	23.0			
10-Mar-17	22:40	2,559	266.6	23.8	2,535	23.0			
10-Mar-17	23:00	2,566	267.1	23.8	2,552	23.0			
10-Mar-17	23:20	2,563	267.4	23.8	2,560	23.0			
10-Mar-17	23:40	2,552	267.3	23.8	2,559	23.0			
11-Mar-17	0:00	2,533	267.0	23.8	2,549	23.0			

Table C-54. Dam Failure Scenario 5 Peak Elevation and Discharges for Reservoir Dam and Old
Oaken Bucket Pond

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)			
Reservoir D	Reservoir Dam - Peak Elevation and Discharge								
10-Mar-17	22:00	2,371	842.2	43.6	2,207	43.6			
10-Mar-17	22:20	2,322	845.8	43.7	2,226	43.7			
10-Mar-17	22:40	2,266	847.5	43.7	2,235	43.7			
10-Mar-17	23:00	2,203	847.5	43.7	2,235	43.7			
10-Mar-17	23:20	2,134	845.8	43.7	2,226	43.7			
10-Mar-17	23:40	2,061	842.5	43.6	2,208	43.6			
11-Mar-17	0:00	1,986	837.7	43.6	2,183	43.6			
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	e					
10-Mar-17	22:00	2,498	264.0	23.8	2,449	23.0			
10-Mar-17	22:20	2,527	265.2	23.8	2,488	23.0			
10-Mar-17	22:40	2,545	266.1	23.8	2,518	23.0			
10-Mar-17	23:00	2,554	266.7	23.8	2,538	23.0			
10-Mar-17	23:20	2,553	267.0	23.8	2,547	23.0			
10-Mar-17	23:40	2,543	267.0	23.8	2,548	23.0			
11-Mar-17	0:00	2,525	266.7	23.8	2,539	23.0			

Table C-55. Dam Failure Scenario 6 Peak Elevation and Discharges for Reservoir Dam and Old
Oaken Bucket Pond

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
Reservoir D	am - Peak El	evation and Di	scharge			
10-Mar-17	0:00	9	579.6	40.4	905	40.4
10-Mar-17	0:20	12	556.4	40.1	804	40.1
10-Mar-17	0:40	12	535.9	39.8	711	39.8
10-Mar-17	1:00	12	517.7	39.5	630	39.5
10-Mar-17	1:20	12	501.7	39.3	559	39.3
10-Mar-17	1:40	12	487.5	39.1	496	39.1
10-Mar-17	2:00	12	475.0	38.9	441	38.9
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	e		
10-Mar-17	3:00	370	119.1	21.2	282	21.4
10-Mar-17	3:20	337	121.1	21.2	283	21.4
10-Mar-17	3:40	307	122.2	21.2	283	21.4
10-Mar-17	4:00	280	122.5	21.2	283	21.4
10-Mar-17	4:20	256	122.0	21.2	283	21.4
10-Mar-17	4:40	233	121.0	21.2	283	21.4
10-Mar-17	5:00	213	119.3	21.2	282	21.4

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
Reservoir D	am - Peak El	evation and Di	scharge			
10-Mar-17	0:00	9	579.6	40.4	10	40.4
10-Mar-17	0:20	12	579.6	40.4	10	40.4
10-Mar-17	0:40	12	556.5	40.1	801	40.4
10-Mar-17	1:00	12	536.1	39.8	707	40.4
10-Mar-17	1:20	12	518.1	39.5	624	40.4
10-Mar-17	1:40	12	502.3	502.3 39.3		40.4
10-Mar-17	2:00	12	488.2	39.1	493	40.4
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	je		
10-Mar-17	3:00	401	78.6	20.2	258	21.2
10-Mar-17	3:20	361	81.9	20.3	260	21.3
10-Mar-17	3:40	327	84.2	20.3	262	21.3
10-Mar-17	4:00	296	85.6	20.4	263	21.3
10-Mar-17	4:20	270	86.1	20.4	263	21.3
10-Mar-17	4:40	247	86.0	20.4	263	21.3
10-Mar-17	5:00	226	85.3	20.4	262	21.3

Table C-56. Dam Failure Scenario 7 Peak Elevation and Discharges for Reservoir Dam and OldOaken Bucket Pond

Multiple Dam Failure

The results of the multiple dam failure scenarios for the existing and proposed Reservoir Dam spillway configuration with the ½ PMF event and Sunny Day conditions are summarized in Table C-57. Time series results for the multiple dam failure analyses are presented in Table C-58, Table C-59, and Table C-60.

Multiple dam failure Scenario 8 with failure of Reservoir Dam and Old Oaken Bucket during the ¹/₂ PMF indicates that the peak discharge at Old Oaken Bucket would be 4,847 cfs assuming a 200 ft long breach Country Way. This peak flow occurred 6 hours prior to the embankment breach of the Reservoir Dam. Failure of Country Way would result in peak Old Oaken Bucket Pond flood levels approximately 1 ft lower than the single failure of Reservoir Dam and both failure scenarios would overtop Country Way.

	Multiple Dam Failure Existing Scenario 8 1/2 PMF Overtop Erosion, Overtop	Multiple Dam Failure Proposed Scenario 9 1/2 PMF Gate Failure,	Multiple Dam Failure Proposed Scenario 10 Sunny Day Gate Failure, Overtop
Parameter	Erosion	Overtop Erosion	Erosion
Tack Factory Pond			
Peak elevation (ft. NAVD88)	45.7	45.1	40.4
Peak Outflow (cfs)	2,239	2,222	10
Reservoir Dam a /			
Peak elevation (ft. NAVD88)	45.4	43.7	40.4
Peak Outflow (cfs)	2,838	2,235	905
Old Oaken Bucket			
Peak elevation (ft. NAVD88)	22.9	22.8	21.2 b/
Peak Outflow (cfs)	4,847 c/	4,974 d/	283.4 b/
Notes:			

Table C-57. Existing and Proposed Multiple Dam Failure Results with ½ PMF Flood and SunnyDay Conditions (Scenarios 8-10)

a/ In general peak elevations occurred either 20-40 minutes prior to peak outflows (breach), or at the same time (gate failure)

b/ no breach occurred (Peak elevation did not reach the modeled breach threshold)

c/ Not a cascading event. Old Oaken Bucket Pond experienced peak outflow at 15:20 due an overtopping breach caused by rainfall and normal Reservoir Dam outflow. This was prior to Reservoir Dam's peak outflow (21:20).

d/ Not a cascading event. Old Oaken Bucket Pond experienced peak outflow at 14:40 due an overtopping breach caused by rainfall and normal Reservoir Dam outflow. This was prior to Reservoir Dam's peak outflow (22:40).

Table C-58. Dam Failure Scenario 8 Peak Elevation and Discharges for Reservoir Dam and Old
Oaken Bucket Pond

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)
Reservoir D	am - Peak El	evation and Di	ischarge			
10-Mar-17	20:00	2,462	1,008.0	45.4	2,143	45.3
10-Mar-17	20:20	2,476	1,013.4	45.4	2,398	45.5
10-Mar-17	20:40	2,475	1,012.8	45.4	2,598	45.5
10-Mar-17	21:00	2,460	1,007.2	45.4	2,741	45.6
10-Mar-17	21:20	2,432	997.7	45.3	2,838	45.6
10-Mar-17	21:40	2,392	988.9	988.9 45.2		45.6
10-Mar-17	22:00	2,342	983.4	45.1	2,505	45.5
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	je		
10-Mar-17	14:00	1,528	198.4	22.7	721	21.9
10-Mar-17	14:20	1,619	211.0	22.9	1,569	22.5
10-Mar-17	14:40	1,706	198.6	22.7	2,660	23.1
10-Mar-17	15:00	1,787	156.8	21.9	3,947	23.7
10-Mar-17	15:20	1,855	82.9	20.3	4,847	24.1
10-Mar-17	15:40	1,897	13.0	16.9	2,829	23.2
10-Mar-17	16:00	1,897	1.9	14.6	1,990	22.7

Table C-59. Dam Failure Scenario 9 Peak Elevation and Discharges for Reservoir Dam and Old
Oaken Bucket Pond

Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)					
Reservoir D	am - Peak El	evation and Di	ischarge								
10-Mar-17	22:00	2,371	1 842.2 43.6 2,207								
10-Mar-17	22:20	2,322	845.8	43.7	2,226	43.7					
10-Mar-17	22:40	2,266	847.5	43.7	2,235	43.7					
10-Mar-17	23:00	2,203	847.5	43.7	2,235	43.7					
10-Mar-17	23:20	2,134	845.8	43.7	2,226	43.7					
10-Mar-17	23:40	2,061	842.5	43.6	2,208	43.6					
11-Mar-17	0:00	1,986	837.7	43.6	2,183	43.6					
Old Oaken l	Bucket Pond	- Peak Elevation	on and Discharg	je							
10-Mar-17	14:00	1,745	185.1	22.4	3,101	23.3					
10-Mar-17	14:20	1,851	130.3	21.4	4,449	23.9					
10-Mar-17	14:40	1,951	50.4	19.5	4,974	24.1					
10-Mar-17	15:00	2,045	6.8	15.9	2,454	23.0					
10-Mar-17	15:20	2,127	2.0	14.7	2,085	22.8					
10-Mar-17	15:40	2,179	2.1	14.7	2,150	22.8					
10-Mar-17	16:00	2,188	2.1	14.8	2,213	22.9					

Ola Oaken Bucket Pona													
Date	Time	Inflow (cfs)	Storage (ac- ft.)	Elevation (ft.)	Outflow (cfs)	Stage (ft.)							
Reservoir D	am - Peak El	evation and Di	ischarge										
10-Mar-17	0:00	9	579.6	40.4	905	40.4							
10-Mar-17	0:20	12	556.4	40.1	804	40.1							
10-Mar-17	0:40	12	535.9	39.8	711	39.8							
10-Mar-17	1:00	12	517.7	39.5	630	39.5							
10-Mar-17	1:20	12	501.7	39.3 559		39.3							
10-Mar-17	1:40	12	487.5	39.1	496	39.1							
10-Mar-17	2:00	12	475.0	38.9	441	38.9							
Old Oaken I	Bucket Pond	- Peak Elevation	on and Discharg	e									
10-Mar-17	3:00	370	119.1	21.2	282	21.4							
10-Mar-17	3:20	337	121.1	21.2	283	21.4							
10-Mar-17	3:40	307	122.2	21.2	283	21.4							
10-Mar-17	4:00	280	122.5	21.2	283	21.4							
10-Mar-17	4:20	256	122.0	21.2	283	21.4							
10-Mar-17	4:40	233	121.0	21.2	283	21.4							
10-Mar-17	5:00	213	119.3	21.2	282	21.4							

Table C-60. Dam Failure Scenario 10 Peak Elevation and Discharges for Reservoir Dam andOld Oaken Bucket Pond

Multiple failure of the proposed Reservoir Dam gates and the Old Oaken Bucket embankment (Scenario 9) results in a peak discharge from Old Oaken Bucket, and a peak Old Oaken Bucket flood level, similar to Reservoir Dam embankment failure Scenario 8.

The sunny day failure of the proposed Reservoir Dam spillway gate (Scenario 10) analysis indicates that the peak flood elevation in Old Oaken Bucket would only reach the low point in Country Way and the Old Oaken Bucket Pond could store the peak outflow from Reservoir Dam.

SUMMARY AND CONCLUSIONS

SPILLWAY STANDARD DESIGN FLOOD

The HEC-HMS modeling conducted in 2018 with the First Herring Brook divided into subbasins evaluated the SDF using two approaches. The first method used rainfall intensities equal to one-half of the PMF rainfall intensities. The second more conservation method used a rainfall intensity that resulted in a ½ PMF peak inflow into Reservoir Dam equal to one-half of the peak PMF inflow. The model simulations indicated that the existing spillway does not have sufficient capacity to pass the SDF and the Reservoir Dam embankment would be overtopped 0.6 ft during ½ PMF SDF and that the maximum peak discharge would be 2,476 cfs.

The 2018 HEC-HMS modeling indicates that a conservative value for the Reservoir Dam ¹/₂ PMF Standard Design Flood (SDF) is 2,247 cfs. The spillway modifications should include reconstruction of the spillway to lower the crest El. 36.5 ft. NAVD88 and installation of a 36.5 ft. wide bottom-hinged gate to allow a maximum normal pool El. 40.4 ft. NAVD88 with the gate fully closed. This proposed spillway configuration increases the existing spillway capacity with the proposed gate fully opened lowering the peak discharge water level to El. 43.7 ft. NAVD88, 1.3 ft. below the top of the Reservoir Dam embankment. The proposed spillway would prevent overtopping of the embankment during the SDF with a wave height equal to one-half of a wave height that could be expected at the dam with the 2,000 ft. open water fetch and a 74 mph Category 1 minimum wind speed.

The Tack Factory Pond weir structure and CJCH, and Old Oaken Bucket Pond dam and Country Way, would be overtopped during the ½ PMF with the existing Reservoir Dam spillway.

100-year Flood

The FEMA Flood Map currently shows the 100-year flood level at El. 42.0 ft. NAVD88 around Reservoir Dam and El. 44.0 ft. NAVD88 around Tack Factory Pond. The analysis conducted to date indicates the Reservoir Dam impoundment 100-year flood level would be El. 43.6 ft. NAVD88 with the existing spillway. Operation of the proposed spillway would reduce the peak 100-year flood discharge to El. 41.0 ft NAVD88.

The HEC-HMS model simulations indicate that the Tack Factory Pond maximum levels during the 100-year flood would be El, 44.0 ft NAVD88 with the existing Reservoir Dam spillway with the proposed Reservoir Dam spillway reducing the peak levels to El, 43.7 ft NAVD88.

Maximum 100-year flood levels at Old Oaken Bucket El. 23.1 ft NAVD88 with the existing and proposed Reservoir Dam spillway. Country Way would be overtopped during the 100-year storm with the existing and proposed Reservoir Dam spillway.

Reservoir Dam Failure

The 2018 HEC-HMS model was used to simulate Reservoir Dam failure via embankment overtopping and piping and failure of the proposed spillway gate. All Reservoir Dam failure scenarios during ¹/₂ PMF event indicate that Country Way at Old Oaken Bucket will be overtopped by several feet for both the existing Reservoir Dam spillway and proposed gated spillway. The proposed spillway for Reservoir Dam reduces the flood level at Old Oaken Bucket by several inches during the ¹/₂ PMF storm. Sunny Dam failure of the Reservoir Dam embankment results in a peak flood El. 20.4 ft NAVD88 at Old Oaken Bucket without overtopping of Country Way. Failure of the proposed Reservoir Dam spillway gate would result in a peak flood El. 21.2 ft NAVD88 in Old Oaken Bucket with the water level at the same elevation as the low point in Country Way.

MULTIPLE DAM HEC-HMS ANALYSIS

The results of multiple dam failure analysis with the HEC-HMS indicate that peak flood levels in Old Oaken Bucket Pond during the ½ PMF event with failure of the proposed spillway gate or embankment with proposed operations to the existing conditions. The results of Sunny Day multiple dam failure scenario are similar to the single Reservoir Dam failure scenario.

FEMA FLOOD MAP UPDATE

The FEMA flood level maps currently indicate that the 100-year flood levels are El. 44.0 ft NAVD88 upstream of Tack Factory Pond, El. 42.0 ft NAVD88 between Tack Factory Pond and Reservoir Dam, and El. 17.5 ft NAVD88 upstream of Old Oaken Bucket. Since the 100-year flood levels upstream of the proposed Reservoir Dam are 3-4 inches lower than the current FEMA 100-year flood, revision of the FEMA flood map would not be necessary for the Reservoir Dam Water Storage and Fish Passage Improvement Project. However, the DPW should consider submittal of a flood level change request to FEMA for the 100-year flood level at Old Oaken Bucket Pond based on the HEC-HMS modeling since the predicted level is 5.6 ft higher than current FEMA level. This change request should be filed after the construction documents are complete.

REFERENCES

- Natural Resource Conservation Service, United States Department of Agriculture (NRCS USDA). (2010). Chapter 15: Time of Concentration. *National Engineering Handbook, Part 630, Hydrology*. Retrieved from <u>https://www.nrcs.usda.gov/wps/portal/nrcs/</u> <u>detailfull/national/</u>water/manage/hydrology/?cid=stelprdb1043063
- Natural Resources Conservation Service, United States Department of Agriculture (NRCS USDA). (March 2017). Web Soil Survey. Retrieved from <u>https://websoilsurvey.sc.egov.usda.gov/</u>
- NOAA National Centers for Environmental Information (NCDC). (2017). Local Climatological Data Station Details. *Data Tools: Local Climatological Data (LCD)*. Retrieved from https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:14753/detail
- NOAA National Weather Service (NWS). (2014). NOAA Atlas 14 Point Precipitation Frequency Estimates: MA. *Precipitation Frequency Data Server, Hydrometeorological Design Studies Center*, Volume 10, Version 2. Retrieved from <u>http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ma</u>
- Secretary of Executive Office of Energy and Environmental Affairs (EOEEA), Commonwealth of Massachusetts. (2017). Certificate #15711 on the Environmental Notification Form (ENF). June 7.

- Tetra Tech, Inc. (Tetra Tech). (2014). Final Preliminary Design Memorandum for Reservoir Dam Water Storage and Fish Passage Improvement Project. June 28.
- Tetra Tech, Inc. 2017. Final Sixty Percent Design and Initial Permitting for Reservoir Dam Water Storage and Fish Passage Improvement Project. June 27.
- Town of Scituate, Department of Public Works Water Division (DPW). (2013). First Herring Brook Reservoir Dam, Phase I Inspection/Evaluation Report.
- United States Army Corps of Engineers (USACE). (2000). Hydrologic Modeling System HEC-HMS Technical Reference Manual. Hydrologic Engineering Center, Davis, CA.
- United States Army Corps of Engineers (USACE). (2010). Hydrologic Modeling System HEC-HMS User's Manual. Version 3.5. Hydrologic Engineering Center, Davis, CA.
- United States Department of Agriculture (USDA). (1986). Urban Hydrology for Small Watersheds. Soil Conservation Service, Engineering Division. Technical Release 55 (TR-55).
- United States Department of the Interior (USDOI). (1973). Bureau of Reclamation. Design of Small Dams: A Water Resources Technical Publication. Second Edition.
- United States Geological Survey (USGS). (2011). 2011 U.S. Geological Survey Topographic LiDAR: LiDAR for the North East. National Geospatial Technical Operations Center (NGTOC), Rolla, MO.

LIST OF ATTACHMENTS

Attachment 1 Supporting Calculations

Attachment 2 HMR-51 PMP Intensity Calculations

ATTACHMENT 1 SUPPORTING CALCULATIONS

Technical Memorandum Proposed Spillway Design KEN'S CALES TCL 1-23-19 ROAD 9. IMDERVIOUS

U	Length	393.5074	365.5797	6210.703	892.0563	717.4073	923.5461	932.2923	2860.831	395.6704	1089,295	155.8168	424.4475	842,434	341.7765	376.6479	524.7238	949.554	1017.623	195.9212	1292.308	586.1839	3515.492	658.4745	472.8203	1260.564	1224.843	1171.565	3165.987	934.3455	1273.97	89.1097	2014.097	758.1497	206.0966	2277.568	1347.044	391.3342
	Count Name	1.00 Polyline																																				
ß	Length	124.7091	604.8636	236.766	1323.833	3419.93	413.1017	5356.806	536.7361	443.9207	446.2662	4114.55	262.4961	114.4708	170.6771	164.3452	253.7271	620.4761	614.9638	551.931	361.548	1081.937	622.092	83.4441	576.1628	659.5505	644.6925	601.8282	108.7992	255.5466	322.5112	743.384	761.3827	310.0314	1212.889	625.6632	201.4917	765.333
	Count Name	1.00 Polyline																																				
۷	Length	668.3838	378.6257	559.468	442.5204	597.8842	4748.699	157.7494	2300.713	164.3264	345.5928	86.9883	494.9812	250.8527	1953.629	426.8222	748.8962	2467.614	403.8334	1772.7	4302.939	1008.921	4474.544	2314.62	1676.735	701.6682	2746.499	2243.476	1373.966	1908.203	1272.687	192.6188	4393.069	2605.802	3372.991	11125.79	415.2938	1224.837
	Count Name	1.00 Polyline																																				

19. 1-1

Ken's CALCS JCC 1-23-19 RUAN 2 INNERVIOUS	check A+B - matches @ 25' wide 60% calc sq ft 2311957.122 120369012 1.921%
KEN'S C Rugu 2	C sq ft sq mi 844995.7 0.03031 31300927 1.122766
1.00 Polyline 1728.43 1.00 Polyline 1812.53	B B sq ft sq mi 665076.3 0.023856331 21734654 0.779623436 3.060%
1.00 Polyline 10468.3 1.00 Polyline 298.773 1.00 Polyline 298.773 1.00 Polyline 83.1913 1.00 Polyline 83.1913 1.00 Polyline 87.1621 1.00 Polyline 107.579 1.00 Polyline 487.1621 1.00 Polyline 487.1621 1.00 Polyline 581.6674 1.00 Polyline 581.5582 1.00 Polyline 83.5582 1.00 Polyline 570.7103	Road width Z0 ft 20 ft A A sq ft sq mi 1646881 0.059074 98634358 3.538021 % Impervious 1.670%

÷

-Z-1.2

Ken's CALCS TEC 1-23-19 WATERSHED A CN

Map unit symbol	Map unit name	Rating
1	Water	
6A	Scarboro muck, coastal lowland, 0 to 3 percent slopes	A/D
30A	Raynham silt loam, 0 to 3 percent slopes	C/D
37A	Massasoit - Mashpee complex, 0 to 3 percent slopes	D
47A	Brockton sandy loam, 0 to 3 percent slopes	C/D
48A	Brockton sandy loam, 0 to 3 percent slopes, extremely stony	C/D
49A	Norwell mucky fine sandy loam, 0 to 3 percent slopes, extremely stony	D
49B	Norwell mucky fine sandy loam, 3 to 8 percent slopes, extremely stony	D
51A	Swansea muck, 0 to 1 percent slopes	B/D
52A	Freetown muck, 0 to 1 percent slopes	B/D
53A	Freetown muck, ponded, 0 to 1 percent slopes	B/D
69A	Mattapoisett loamy sand, 0 to 3 percent slopes, extremely stony	D
71A	Ridgebury fine sandy loam, 0 to 3 percent slopes, extremely stony	D
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D
110B	Canton-Chatfield-Rock outcrop complex, 0 to 8 percent slopes, very stony	В
111C	Chatfield-Rock outcrop-Canton complex, 8 to 15 percent slopes, very stony	В
223B	Scio very fine sandy loam, 3 to 8 percent slopes	С
253B	Hinckley loamy sand, 3 to 8 percent slopes	A
2568	Deerfield fine sand, 3 to 8 percent slopes	A
260A	Sudbury fine sandy loam, 0 to 3 percent slopes	A/D
262A	Quonset sandy loam, 0 to 3 percent slopes	A
289B	Hinckley gravelly sandy loam, 3 to 8 percent slopes, bouldery	A
289C	Hinckley gravely sandy loam, 8 to 15 percent slopes, bouldery	A
300B	Montauk fine sandy loam, 3 to 8 percent slopes	С
301B	Montauk fine sandy loam, 0 to 8 percent slopes, very stony	С
301C	Montauk fine sandy loam, 8 to 15 percent slopes, very stony	С
301E	Montauk fine sandy loam, 15 to 35 percent slopes, very stony	С
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С
306C	Paxton fine sandy loam, 8 to 15 percent slopes, very stony	С
310A	Woodbridge fine sandy loam, 0 to 3 percent slopes	C/D
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	C/D
311A	Woodbridge fine sandy loam, 0 to 3 percent slopes, very stony	C/D

19.2-1

(2

KIEN'S CALCS TCC 1-23-19 WATERSHED ACN

311B	Woodbridge fine sandy loam, 3 to 8 percent slopes, very stony	C/D
315A	Scituate gravelly sandy loam, 0 to 3 percent slopes	C/D
315B	Scituate gravelly sandy loam, 3 to 8 percent slopes	C/D
316A	Scituate gravelly sandy loam, 0 to 3 percent slopes, very stony	C/D
316B	Scituate gravelly sandy loam, 3 to 8 percent slopes, very stony	C/D
316C	Scituate gravelly sandy loam, 8 to 15 percent slopes, very stony	C/D
321A	Birchwood sand, 0 to 3 percent slopes, very stony	B/D
321B	Birchwood sand, 3 to 8 percent slopes, very stony	B/D
322A	Poquonock sand, 0 to 3 percent slopes	A
323B	Poquonock sand, 3 to 8 percent slopes, very stony	A
323C	Poquonock sand, 8 to 15 percent slopes, very stony	A
341B	Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony	С
421B	Canton fine sandy loam, 0 to 8 percent slopes, very stony	В
421C	Canton fine sandy loam, 8 to 15 percent slopes, very stony	В
426A	Newfields fine sandy loam, 0 to 3 percent slopes	В
426B	Newfields fine sandy loam, 3 to 8 percent slopes	В
427A	Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony	В
427B	Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony	В
453B	Gloucester - Canton complex, 3 to 8 percent slopes, extremely bouldery	Α
453C	Gioucester - Canton complex, 8 to 15 percent slopes, extremely bouldery	A
478C	Plymouth - Poquonock complex, 8 to 15 percent slopes, bouldery	A
602B	Urban land, 0 to 8 percent slopes	
654B	Udorthents, loamy, 0 to 8 percent slopes	В
659B	Udorthents, 0 to 8 percent slopes, gravelly	В
700A	Udipsamments, wet substratum, 0 to 3 percent slopes	A/D

KEN'S CALC TOC 1-23-19

WATERSHED A CN

Acres in AOI	Percent of AOI	cover type (estimate)	Curve #	Pervious CN	mpervious	s (use figu	re 2-4 il
12.2	0.50%	water	0	c		0	
2.5	0.10%	woods/marsh	30	75	0	0	
4.4	0.20%	- -	77	338.8	0	0	
5.6	0.20%		82	459.2	0	0	
41.5	1.80%	woods/marsh	70	2905	0	0	
104.9	4.60%	residential	77	8077.3	12	969.276	
142.7	6.30%	woods/marsh	77	10987.9	0	0	
15.8	0.70%		82	1295.6	0	0	
89.1	3.90%	woods/marsh	55	4900.5	0	D	
257.4	11.40%	woods/marsh	55	14157	0	0	
5.8	0.30%	woods/marsh	55	319	0	D	
3	0.10%		82	246	0	0	
3.4	0.20%		82	278.8	0	0	
15.5	0.70%	woods/marsh	77	1193.5	C	0	
4.4	0.20%		65	286	0	0	
2	0.10%	woods/marsh	77	154	0	0	
4.4	0.20%		77	338.8	0	0	
44.7	2.00%	res, res wide	46	2056.2	12	246,744	
7.8	0.30%	woods/marsh	30	234	0	0	
0.6	0.00%		46	27.6	0	0	
4.1	0.20%	res	54	221.4	25	55.35	
2.6	0.10%		46	119.6	0	0	
29.3	1.30%	residential	54	1582.2	25	395.55	
2.5	0.10%	woods/marsh	70	175	0	0	
90.1	4.00%	residential	80	7208	25	1802	
15.5	0.70%	res	80	1240	25	310	
9.8	0.40%	woods/marsh	70	686	0	0	
37	1.60%	residential	80	2960	25	740	
3.8	0.20%	res	80	304		76	
5.5	0.20%	field	74	407	0	0	
25.3	1.10%	res	80	2024	25	506	
152	6.70%	residential	80	12160	25	3040	

1.1

Pg. 2-3

KEN'S CALCS TCC 1-23-19

WATARSHED A CN

304.1	13.40%	residential, woods/marsh	77	23415.7	12	2809.884
43.4	1.90%	res wide	77	3341.8	12	401.016
3.5	0.20%	residential	80	280	25	70
84.5	3.70%	residential	80	6760	25	1690
195.5	8.60%	residential	80	15640	25	3910
13.8	0.60%	woods/marsh	70	966	0	0
24.3	1.10%	residential, woods/marsh	55	1336.5	12	160.38
59.4	2.60%	residential	70	4158	25	1039.5
3	0.10%	residential	54	162	25	40.5
64.2	2.80%	residential	54	3466.8	25	866.7
54.8	2.40%	residential	54	2959.2	25	739.8
10.9	0.50%		77	839.3	0	0
33.7	1.50%	residential	70	2359	25	589.75
6.1	0.30%	res	65	396.5	25	99.125
2.9	0.10%	residential	70	203	25	50.75
14.6	0.60%	residential	70	1022	25	255.5
73.6	3.30%	res wide	65	4784	12	574.08
61.8	2.70%	residential	70	4326	25	1081.5
3	0.10%	res	54	162	25	40.5
19.8	0.90%		46	910.8	0	0
2.3	0.10%		46	105.8	0	0
16.2	0.70%	big urban	89	1441.8	80	1153.44
2	0.10%	res	70	140	25	35
16.7	0.70%	res	70	1169	25	292.25
5.3	0.20%	res	54	286.2	25	71.55
2,264.50	100.00%					
			pervious CN	69.79104478		15%
			N from figure 2.4	70.5		

composite CN from figure 2-4: 70.5

Pg.2-4

KEN'S CALCS TOC 1-23-19 WATERSHED A CN

' < 30%)

CN numbers used i	to estimate o	composite CN
-------------------	---------------	--------------

	A	В	С	Ď	% imperv
Agricultural	67	78	85	89	1
Urban	89	92	94	95	85
1/2 acre	54	70	80	85	25
2 acre	46	65	77	82	12
parks	39	61	74	80	
woods	30	55	70	77	

Pg-2-5

WATERSHED BCN

Map unit symbol		Rating		Percent of AD
1	Water		63.3	12.70%
48A	Brockton sandy loam, 0 to 3 percent slopes, extremely stony	C/D	41.6	8.30%
49B	Norwell mucky fine sandy loam, 3 to 8 percent slopes, extremely stony	D	17	3.40%
51A	Swansea muck, 0 to 1 percent slopes	B/D	9.1	1.80%
53A	Freetown muck, ponded, 0 to 1 percent slopes	B/D	1.6	0.30%
69A	Mattapoisett loamy sand, 0 to 3 percent slopes, extremely stony	D	0	0.00%
71A	Ridgebury fine sandy loam, 0 to 3 percent slopes, extremely stony	Ð	1.4	0.30%
301B	Montauk fine sandy loam, 0 to 8 percent slopes, very stony	С	24.4	4.90%
301C	Montauk fine sandy loam, 8 to 15 percent slopes, very stony	С	1.2	0.20%
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	C/D	2.8	0.60%
311A	Woodbridge fine sandy loam, 0 to 3 percent slopes, very stony	C/D	73.5	14.70%
311B	Woodbridge fine sandy loam, 3 to 8 percent slopes, very stony	C/D	218	43.70%
311C	Woodbridge fine sandy loam, 8 to 15 percent slopes, very stony	C/D	1.6	0.30%
321B	Birchwood sand, 3 to 8 percent slopes, very stony	B/D	14.3	2.90%
3228	Poquonock sand, 3 to 8 percent slopes	A	0	0.00%
322C	9	Α	3.5	0.70%
323C	Poquonock sand, 8 to 15 percent slopes, very stony	Α	4.5	0.90%
127A	Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony	В	0.3	0.10%
127B	Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony	в	0.2	0.00%
502B	Urban land, 0 to 8 percent slopes		7	1.40%
59B	Udorthents, 0 to 8 percent slopes, gravelly	в	13.4	2.70%
200A	Udipsamments, wet substratum, 0 to 3 percent slopes	A/D	0.4	0.10%
otals for Area	of Interest		499	100.00%

over type (estima	t.	Curve #			Impervious	/ious (use figure
water				0 0	a	0
water				0 0	0	0
woods			7	0 2912	0	0
woods			7	7 1309	0	0
woods/marsh			5	5 500.5	0	D
woods/marsh			5	5 88	0	0
beor				0 0	80	0
res edge			8	2 114.8	12	13.776
res 75%			7	7 1878.8	12	225.456
785			E	0 96	25	24
res			8	0 224	25	56
residential denser			8	0 5880	80	4704
woods/development	N		7	7 16786	12	2014.32
res			8	0 128	25	32
res wide			6	5 929.5	12	111.54
res				0 0	25	0
woods			3	0 105	0	0
res wide			4	6 207	12	24.84
res			7	0 21	25	5.25
res			7	0 14	25	3.5
school			9	5 665	80	532
park/track/road			7	938	12	112.56
dam			3	0 12	0	0
	pervious CN			65.7355		24%
	composite CN from figure 2-4:			70		

Pg. 3-1

.

٠.

KEN'S CALCS TCC 1-23-19 WATHASHED C CN

Map unit symbol	Map unit name	Rating	Acres In AOI	Percent of AOI	cover type (estimate)	Curve #		Impervia us	percent Impervious (use figure 2-4 if < 30%)
1	Water		10.4	1.40%	water	0	٥	0	a
23A	Tihonet coarse sand, D to 3 percent slopes	A/D	8.1	1.10%	agricult	67	542.7	0	0
37A	Massasoit - Mashpee complex, 0 to 3 percent slopes	D	7.3	1.00%	res	85	620.5	25	155.125
47A	Brockton sandy loam, 0 to 3 percent slopes	C/D	2.1	0.30%	woods	70	147	o	o
48A	Brockton sandy loam, 0 to 3 percent slopes, extremely stony	C/D	66.5	9.30%	res/woods	77	5120.5	12	614.46
49A	Norwell mucky fine sandy loam, 0 to 3 percent slopes, extremely stony	D	9.8	1.40%	woods	77	754.5		
49B	Norwell mucky fine sandy loam, 3 to 8 percent slopes, extremely stony	D	28.7	4.00%	res wide, woods	82	2353.4	12	282 408
51A	Swansea muck, 0 to	B/D	20	2.80%	woods			0	
52A	1 percent slopes Freetown muck, 0 to	B/D	61.7	8.60%	woods	55	1100	1.5	
53A	1 percent slopes Freetown muck, ponded, 0 to 1	B/D	25.6	3.60%	marsh	55	3393.5	0	
55A	percent slopes Freetown coarse sand, 0 to 3 percent slopes, sanded surface	B/D	16.4	2.30%	cranberry bog	78	1408	4. 70	
50A	Swansea coarse sand, 0 to 2 percent slopes	B/D	5.3	0.70%	cranberry bog	78	413.4	0	
71A	Ridgebury fine sandy loam, 0 to 3 percent slopes,	D	0.7	0.10%	woods				K (4.5)
221A	loam, 0 to 3 percent	C/D	3.7	0.50%	res	80	53.9	25	
221B	slopes Eldridge fine sandy loam, 3 to 8 percent slopes	C/D	8.8	1.20%	res	80	704	25	
2538		A	2.8	0.40%	woods	30	84	0	0
255C	Windsor loamy sand, 8 to 15 percent slopes	A	2.8	0.40%		30	84	0	
256A	Deerfield fine sand, 0 to 3 percent slopes	A	2.5	0.30%	woods	30	75	0	
260A	Sudbury fine sandy loam, 0 to 3 percent slopes	A/D	59.6	8.30%	res	54	3218.4	25	
289B	Hinckley gravelly sandy loam, 3 to 8 percent slopes, bouldery	A	13.8	1.90%	res	54	745.2	25	
289C -	Hinckley gravelly sandy loam, 8 to 15 percent slopes, bouldery	A	36.3	5.00%	woods, res	46	1669.8	12	
300B	Montauk fine sandy Ioam, 3 to 8 percent	с	8	1.10%	res	90	640	25	
300C	slopes Montauk fine sandy Ioarn, 8 to 15 percent slopes	с	18.4	2.60%	res	50	640	25	
3108		Ċ/D	13.2	1.80%	res	80	1056	25	

. .

KEN'S CALCS TCC 1-23-19 WATERSHAD CON

311B 311C 3218 322A 322B 322C 341B 322C 341B 421B 426A 427A 427B 427B 427B 427B 427B 427B 427B	to 8 percent slopes Poquonock sand, 8 to 15 percent slopes Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony Broadbrook very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	C/D C/D B/D A A A A C C B B B B B	34.2 70.6 26.2 36.3 1.3 4.5 0 2.2 6.3 3.4 5.7 10.5 19	4.80% 9.80% 3.60% 5.10% 0.20% 0.60% 0.00% 0.30% 0.30% 0.90% 0.50% 0.80% 1.50% 2.60%	woods res res woods woods res woods res woods res res res res res res res res voods res res res res res res res res res re	70 80 65 30 54 0 70 70 70 70 60	2394 5648 2096 2359.5 39 243 0 154 485.1 238 399	0 25 25 12 0 25 0 12 25 25	0 1412 524 233.14 0 60.75 0 0 58.212 59.5 99.75
311B 311C 3218 322A 322B 322C 341B 341C 421B 426A 427A 427B 427B 427B 427B 427B 427B 427B 427B 427B 427B	Woodbridge fine sandy loam, 3 to 8 percent slopes, very stony Woodbridge fine sandy loam, 8 to 15 percent slopes, very stony Birchwood sand, 3 to 8 percent slopes, very stony Poquonock sand, 0 to 3 percent slopes Poquonock sand, 3 to 15 percent slopes Proquonock sand, 8 to 15 percent slopes Broadbrook very fine sandy loam, 3 to 15 percent slopes, very stony Broadbrook very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	C/D B/D A A A C C B B B B B	26.2 36.3 1.3 4.5 0 2.2 6.3 3.4 5.7 10.5	3.60% 5.10% 0.20% 0.60% 0.30% 0.30% 0.90% 0.50% 0.80% 1.50%	res voods res woods res/woods res/woods res res res res wide, woods res wide,	80 65 30 54 0 70 77 70 70	5648 2096 2359.5 39 243 0 154 485.1 238 399	25 25 12 0 25 0 12 25 25	1412 524 233.14 0 60.75 0 6 58.212 59.5
311C 3218 322A 322B 322C 341B 341C 421B 426A 427A 427B 427B 427B 427B 427B	Woodbridge fine sandy loam, 8 to 15 percent slopes, very stony Birchwood sand, 3 to 8 percent slopes, very stony Poquonock sand, 0 to 3 percent slopes Poquonock sand, 3 to 8 percent slopes Poquonock sand, 8 to 15 percent slopes Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony Broadbrock very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	B/D A A A C C B B B B B B	36.3 1.3 4.5 0 2.2 6.3 3.4 5.7 10.5	5.10% 0.20% 0.60% 0.30% 0.30% 0.90% 0.50% 0.80% 1.50%	res/woods res woods res/woods res res res res res wide, woods res wide,	80 65 54 0 70 77 70 70	2096 2359.5 39 243 0 154 485.1 238 399	25 12 0 25 0 12 25 25	524 283.14 0 60.75 0 0 58.212 59.5
3218 322A 322B 322C 341B 341C 421B 426A 427A 427A 427B 427B 478B 478C	Birchwood sand, 3 to 8 percent slopes, very stony Poquonock sand, 0 to 3 percent slopes Poquonock sand, 3 to 8 percent slopes Poquonock sand, 8 to 15 percent slopes Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony Broadbrook very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	A A A C C B B B B B B B	1.3 4.5 0 2.2 6.3 3.4 5.7 10.5	0.20% 0.60% 0.00% 0.30% 0.90% 0.50% 0.80% 1.50%	woods res woods res/woods res res res res wide, woods res wide,	65 30 54 0 70 70 70	2359.5 39 243 0 154 485.1 238 399	12 0 25 0 12 25 25	283.14 0 60.75 0 0 58.212 59.5
322A 322B 322C 341B 341C 421B 426A 427A 427B 427B 478B 478C 623B	Poquonock sand, 0 to 3 percent slopes Poquonock sand, 3 to 8 percent slopes Poquonock sand, 8 to 15 percent slopes Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony Broadbrook very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	A A C C B B B B B B	4.5 0 2.2 6.3 3.4 5.7 10.5	0.60% 0.00% 0.30% 0.90% 0.50% 0.80% 1.50%	res/woods res/woods res res res res wide, woods res wide,	30 54 70 77 70 70	39 243 0 154 485.1 238 399	0 25 0 12 25 25	0 60.75 0 58.212 59.5
3228 322C 3418 341C 4218 426A 427A 4278 4278 4788 4788 4788	Poquonock sand, 3 to 8 percent slopes Poquonock sand, 8 to 15 percent slopes Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony Broadbrook very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 3 percent slopes, extremely slopes, extremely stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	A C B B B	0 2.2 6.3 3.4 5.7 10.5	0.00% 0.30% 0.90% 0.50% 0.80% 1.50%	woods res/woods res res res wide, woods res wide,	54 0 70 77 70 70	243 0 154 485.1 238 399	25 0 12 25 25	60.75 0 0 58.212 59.5
322C 3418 341C 4218 426A 427A 4278 4278 4788 4788 6238 652E	Poquonock sand, 8 to 15 percent slopes Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony Broadbrook very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	С С В В	2.2 6.3 3.4 5.7 10.5	0.30% 0.90% 0.50% 0.80% 1.50%	res/woods res res res wide, woods res wide,	a 70 77 70 70	0 154 485.1 238 399	0 12 25 25	0 58.212 59.5
3418 341C 421B 426A 427A 427A 427B 478B 478C 623B 652E 656B	Broadbrook very fine sandy loam, 3 to 8 percent slopes, very stony Broadbrook very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	C B B B	6.3 3.4 5.7 10.5	0.90% 0.50% 0.80% 1.50%	res/woods res res res wide, woods res wide,	70 77 70 70	154 485.1 238 399	0 12 25 25	0 58 212 59.5
341C 421B 426A 427A 427A 427B 478B 478C 623B 652E 656B	Broadbrock very fine sandy loam, 8 to 15 percent slopes, very stony Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	8 8 8	3.4 5.7 10.5	0.50% 0.80% 1.50%	res res wide, woods res wide,	77 70 70	485.1 238 399	12 25 25	58.212 59.5
4218 426A 427A 427B 478B 478C 623B 652E 656B	Canton fine sandy loam, 0 to 8 percent slopes, very stony Newfields fine sandy loam, 0 to 3 percent slopes Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	8 8 8	5.7	0.80%	res wide, woods res wide,	70 70	238 399	25 25	59.5
426A 427A 427B 427B 478B 478C 623B 652E	Newfields fine sandy loam, 0 to 3 percent slopes Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	в	10.5	1.50%	res wide, woods res wide,	70	399	25	
427A 427B 478B 478C 623B 652E	Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -	в			woods res wide,				99.75
4278 4788 478C	Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony Plymouth -		19	2.60%		60			
4786 478C	Plymouth -				110003		630	12	75.6
623B	Poquonock complex, 3 to 8 percent slopes, bouldery	A	5.8	0.80%	res	60	1140	12	136.8
652E	Plymouth - Poquonock complex, 8 to 15 percent slopes, bouldery	A	15.5	2.20%	res	54	313.2	25	78.3
652E 656B	Woodbridge- Scituate-Urban land complex, 0 to 8	C/D	11	1.50%	res, heavy dev, park	54	837	25	209.25
656B	percent slopes Udorthents, refuse substratum, 8 to 35	в	9.2	1.30%	woods	80	880	80	704
	percent slopes Udorthents - Urban land complex, 0 to 8		15.3	2.10%	heavy urban	55	506	o	0
3	percent slopes Udipsamments, wet substratum, 0 to 3	A/D	9.5	1.30%	dam	92	1407.5	80	1126.08
	percent slopes or Area of Interest		718.6	100.00%	Beru	30	285 55.76565	0	17%
					composite CN from fig		68.5		
1					Composite Cit from its	ure 244	96.3		
· · · · · · · · · · · · · · · · · · ·		I							
		-							
-									

pg. 4-2

Ken's CALCS TCC 1-23-19 WARRASHED LAG	SCS unit graph method tc = Tca + Tcb + Tcc, Tca = trave! time subbasin A Tc = {(11.9*L^3}/H)^0.385 ?? - not sure where this equation comes Lt = 0.6t ?? from - just a check against Lag method Tp = D/2 + Lt ?? L = length to divide (mi) H = elevation difference (ft) d= storm duration (hours)		
	SCS unit graph method tc = Tca + Tcb + Tcc, Tca Tc = {(11.9*L^3}/H)^0.38 Lt = 0.6t Tp = D/2 + Lt L = length to divide (mi) H = elevation difference d= storm duration (hour	60% example check 4.346591 22950 42.3 100 57.7 0.28% 64 64 5.625 5.625 11.51128 690.6769 11.51128 690.6769 12.57527 754.5162	
	NRCS Watershed Lag (SCS Lag) Method t(p) =(L^0.8(S+1)^0.7)/(1900*(y)^0.5) L = Length to divide (ft) S = potential abstraction (inches) S = (1000/CN) - 10 y = average watershed slope (%) w	A B C 4.19 0.9 1.32 22123.2 4752 6969.6 42.3 4753 6969.6 42.3 47.3 16 146 117 124 103.7 74.7 108 0.469% 1.572% 1.550% 70.5 74.7 108 70.5 7.276929 1.176787 71.2456127 1.060725 100.5792 12.4526 12.28405 12.28562 12.4526 12.28405 12.28562 74.7.156 737.0429 737.1372	
	where	L (miles) L (ft) H (fuwest) H (highest H v (%) CN S CN S CN S unit graph method (minutes) unit graph method (minutes)	

KEN'S CALCS TEL 1-23-19 WATERSHED BASEFLOW

Initial Discharge Area A+B (60%)	12 cfs 4.3 sq mi		
ratio	2.790698 cfs/sq mi		
		check	
Area A	3.538 sq mi	area A+B	4.3176 sq mi
Area B	0.7796 sq mi		
Area C	1.1228 sq mi		
Discharge A	9.873 cfs		
Discharge B	2.176 cfs		
Discharge C	3.133 cfs		

Ken & CALCS TCC 1-23-19 STOPAGE CAP CURVES - EXISTING

> Reservoir Sources:

2001 CEI Bathymetry 2011 LIDaR (2018 analysis)

		million gal	419.13	349.14	284.41	228.40	178.98	155.31	113.59	75.55	43.77	17.77	1.46	
	se Volume	lim	1286.24	1071.47	872.83	700.93	549.27	476.64	348.60	231.86	134.31	54.53	4.48	
	Total Storage Volume	acre-ft	77.	.64	60	.66	63	04	.74	55	.78	05	48	
		acre-ft	214.77	198.	171.90	151	72.	128.	116.	97.	79.	50.	4.	
	Volume	ŋ	69982654	64728471	56014878	49417224	23668037	41723016	38039579	31785490	25997109	16308565	1460197	
	Incremental Storage Volume	gal												
		sq mi	0.16779	0.15519	0.13430	0.11848	0.10317	0.10003	0.09120	0.07621	0.06233	0.03910	0.00350	
		acres si	107.38	99.32	85.95	75.83	66.03	64.02	58.37	48.77	39.89	25.02	2.24	,
			4677660	4326469	3744050	3303061	2876324	2788778	2542576	2124551	1737654	1090069	97600	
	Area	Sq ft						-	-					
		1929 Datum	49.1	47.3	45.1	43.1	41.1	40	38	36	34	32	30	28
fair france and and	Elevation	1988 Datum 1929 Datum Sq ft	48	46	44	42	40	38.9	36.9	34.9	32.9	30.9	28.9	26.9

Tack Factory Pond

Sources:

2001 CEI Bathymetry 2011 LiDaR (2018 analysis)

		million gal	126.32	83.22	53.08	31.46	15.07	10.03	8.55	2.58	1.45	0.75	0.33	0.11	0.03	0.01
	fotal Storage Volume	milli	387.66	255.39	162.91	96.54	46.24	30.78	26.23	7.90	4.45	2.31	1.00	0.33	0.10	0.02
	Total Stora	acre-ft														
		acre-ft	132.27	92.48	66.37	50.30	15.47	4.55	18.32	3.46	2.14	1.31	0.68	0.23	0.08	0.02
	Incremental Storage Volume	G	43101227	30136021	21627035	16388771	5039621	1481830	5971143	1126447	697551	425268	220174	74816	25935	5266
	Incremental S	gal	4	5	5	6	7	4	3	0	5	8	ц.	2	5	S
		sq mi	0.10334	0.07225	0.0518	0.0392	0.0219	0.0118	0.01273	0.0108	0.0066	0.0040	0.0021	0.0007	0.0002	0.00005
		acres s	66.14	46.24	33.19	25.15	14.06	7.58	8.14	6.91	4.28	2.61	1.35	0.46	0.16	0.03
		10	2880898	2014300	1445557	1095430	612454	330153	354767	301168	186498	113700	58866	20003	6934	1408
	Area	Sq ft														
		1929 Datum	49.1	47.1	45.1	43.1	41.1	40	39.4	37.15	36.65	36.15	35.65	35.15	34.65	34.15
aR (2018 analysis)	Elevation	1988 Datum 1929 Datum Sq ft	48	46	44	42	40	38.9	38.3	36.05	35.55	35.05	34.55	34.05	33.55	33.05

1-2-60

STORAGE CAP CURVES- EXISTING KEN'S CALCS TCC 1-23-19

Old Oaken Bucket

2001 CEI Bathymetry Sources:

2011 LiDaR (2018 analysis)

Elevation		Area				Incremental Storage Volume	Volume		Total Storage Volume	: Volume
1988 Datum	1988 Datum 1929 Datum	Sq ft	ac	acres	sq mi	gal		acre-ft	acre-ft	E
26			2899423	66.56	0.10400		43378380	133.12		409.39
24			2536967	58.24	0.09100		37955662	116.48	~	276.27
22			2085872	47.88	0.07482		15603406	47.85	~	159.79
21			1809461	41.54	0.06491		20303562	62.31	_	111.90
19.5	20.6		1487453	34.15	0.05336		6676153	20.49		49.59
18.9			351682	8.07	0.01261		5261528	16.15		29.10
16.9			278075	6.38	0.00997		2080145	6.35		12.96
15.9	17	Į	184781	4.24	0.00663		1382258	4.24	_	6.57
14.9			59916	1.38	0.00215		448203	1.38	~	2.33
13.9	15		20818	0.48	0.00075		311459	0.96		0.96
11.9	13									

133.40 90.02 52.07 36.46 16.16

million gal

9.48 4.22 2.14

0.76 0.31

.

2-2.64

STORAGE CAPACUTY CURURS KAN'S CALCS TCC 1-23-19

Reservoir

Sources:

2001 CEI Bathymetry 2011 LiDaR (2018 analysis) Elevation Wea 1988 Datum 1929

Wean

evation	Weap	Area			_	Incremental Storage Volume	Volume	
88 Datum	1929 Datum	Sq ft		acres	sq mi	gal	acr	acre-ft
48	49.1		4677660	107.38	0.16779		69982654	214.77
46	47.1		4326469	99.32	0.15519		64728471	198.64
44	45.1		3744050	85.95	0.13430		56014878	171.90
42	43.1		3303061	75.83			49417224	151.66
40	41.1		2876324	66.03	0.10317		23668037	72.63
38.9	40		2788778	64.02			41723016	128.04
36.9	38		2542576	58.37			38039579	116.74
34.9	. 36		2124551	48.77			31785490	97.55
32.9	34		1737654	39.89			25997109	79.78
30.9	32		1090069	25.02	0.03910		16308565	50.05
28.9	30		97600	2.24	0.00350		1460197	4.48
26.9	28							

1-8-64

1-53-19	CURVES
tcc	CAPACITY
Ken's CALCS	STURAGE CA

2001. (John (A) per Tom Cook (J24/19) 2001. (John (A) Arian (John (John (John (A) Arian (John (J	Tack Factory Pond Sources:	NAVD88 +	0.8	ft = NGVD 1929	6	۳ ۳	STURKER CAPACITY CURVES	PACITY O	-
Area Total Storage Volume Total Storage Volume 329 Datum 31 acres arres Total Storage Volume 47.1 2880898 66.14 0.10334 4101227 132.27 387.66 1 47.1 2004300 66.14 0.10334 4101227 132.77 387.66 1 47.1 2004300 46.24 0.07325 30136021 22.630 387.66 1 387.66 1 47.1 612461 14.06 0.02197 30136025 51248251 52.60 96.54 96.54 411 612461 14.06 0.02197 32300325 51838771 50.30 96.54 96.54 4145 612461 14.06 0.02197 1332610 5.62 96.54 96.54 4135 301168 612447 814 0.012847 1332610 56.21 96.54 313715 301168	2001 CEI Bathymetry	*	per Tom Cook 1,	/24/19					
Area Total Storage Volume Million ge 41.1 204430 45.24 0.10333 3013621 92.48 46.24 307.88 46.24 307.88 46.24 45.24 307.88 46.24 47.85 36.55 36.56 36	2011 LiDaR (2018 analysi	s)							
329 Datum Sqitt acre-ft acre-ft acre-ft acre-ft million gr 49.1 2800898 66.14 0.10334 91.227 132.27 387.66 1 47.1 2014900 46.24 0.07255 30146021 92.48 255.39 1 45.1 10035430 55.15 0.030299 165.37 152.91 165.91 41.1 612461 14.06 0.02197 3203071 50.30 96.54 40.4 612461 14.06 0.02197 1832610 5.62 36.76 36.53 39.4 354767 8.14 0.01273 330.78 330.78 36.53 31 30158 6.91 0.01280 1481830 4.55 36.78 750 31 30158 6.91 0.01273 1481830 4.55 36.73 30.78 31 3156 1 1481830 4.55 36.73 26.23 3555 58866 1.35 0.01080	Elevation		Area		Ľ	cremental Storage Volume	Total Store	age Volume	
49.1 2880898 66.14 0.10334 43101227 132.27 387.66 1 47.1 2014300 46.24 0.07225 30136021 92.48 255.39 162.91 45.1 144557 33.19 0.05185 56.37 162.29 165.291 43.1 1095430 25.15 0.03929 16388771 50.30 96.54 41.1 612454 14.06 0.02197 13207032 9.84 46.24 40.4 612451 14.05 0.01184 14318610 5.62 36.73 39.4 330153 7.15 0.01297 13207032 9.84 46.24 40 330153 7.15 1405 0.01184 1481850 5.62 30.78 39.4 330153 7.18 0.01184 1481850 5.62 30.78 37.15 301168 6.91 0.01080 1126447 3.46 790 35.65 58866 1.135 0.00180 12561 2	1988 Datum	1929 Datum	Sq ft					E	nillion gal
47.1 2014300 46.24 0.07225 30136021 92.48 255.39 45.1 1095430 25.15 0.05185 56.37 162.21 162.21 41.1 612454 14.06 0.02197 3207032 9.84 46.24 41.1 612451 14.06 0.02197 1823610 5.63 96.54 40.4 512461 14.06 0.02197 1832610 5.62 36.53 39.4 390153 7.58 0.01184 1431830 45.5 30.78 37.15 301158 6.91 0.01273 597143 18.32 26.23 37.15 301158 6.91 0.01273 597143 18.32 26.23 36.15 113700 2.61 0.001273 597143 34.6 7.90 35.15 2143 0.23 2.14 0.23 2.31 36.63 133700 2.61 0.00408 47.55 2.14 47.45 35.13 140.6	48	49.1		66.14	10334	43101227	132.27		126.32
45.1 1445557 33.19 0.05185 0.65.37 162.91 162.91 43.1 10095430 25.15 0.03929 16388771 50.30 96.54 41.1 612454 14.06 0.02197 3207032 9.84 46.24 40.4 612461 14.06 0.02197 3207032 9.84 46.24 40 330153 7.58 0.01184 1832610 5.62 30.78 334 334767 8.14 0.01273 997143 18.32 26.03 37.15 301168 6.91 0.01080 1126447 3.46 7.90 36.15 113700 2.61 0.00069 697551 2.14 2.613 36.15 113700 2.61 0.00008 475568 1.31 2.03 36.15 113700 2.61 0.00008 6.9751 2.14 2.613 36.16 0.0669 6.9751 2.14 0.68 1.00 35.15 2.033 0.0302 0.02 2.614 0.03 35.16 0.0408	46	47.1			0.07225	30136021	92.48	255.39	83.22
43.1 1095430 25.15 0.03929 16388771 50.30 96.54 41.1 612454 14.06 0.02197 3207032 9.84 46.24 40.4 612461 14.06 0.02197 3207032 9.84 46.24 40.4 612461 14.06 0.02197 3207032 9.84 46.24 40.4 51 101184 1481830 4.55 30.78 30.78 39.4 354767 8.14 0.01273 981830 4.55 30.78 37.15 301168 6.91 0.01080 11481830 7.50 7.90 36.15 113700 2.61 0.00408 1126447 3.46 7.30 36.15 113700 2.61 0.001080 1126447 3.46 7.45 36.15 113700 2.61 0.001080 1.31 2.31 35.15 2003 0.25 0.20174 0.66 0.33 34.15 1408 0.016	44	45.1			0.05185	21627035	66.37	162.91	53.08
41.1 612454 14.06 0.02197 3207032 9.84 46.24 40.4 612461 14.06 0.02197 1832610 5.62 36.40 40.4 612461 14.06 0.02197 1832610 5.62 36.73 39.4 354767 8.14 0.01273 5971143 18.32 26.23 37.15 301168 6.91 0.01080 1126447 3.46 7.90 36.15 1186498 4.28 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.00408 42568 1.31 2.003 35.15 28866 1.35 0.00121 220174 0.68 1.31 35.15 20003 0.46 0.00211 220174 0.68 0.10 34.15 1408 0.03 0.046 0.0021 220174 0.68 0.10 34.15 1408 0.03 0.0605 52635 0.03 0.33 34.15 1408 0.03 0.0005 250174 0.68 0.10	42	43.1			0.03929	16388771	50.30	96.54	31.46
40.4 612461 14.06 0.02197 1832610 5.62 36,40 40 330153 7.58 0.01184 1481830 4.55 30.78 39.4 354767 8.14 0.01273 5971143 18.32 26.23 37.15 301168 6.91 0.01080 1126447 3.46 7.90 36.55 186498 4.28 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.00408 4.25268 1.31 2.31 36.15 113700 2.61 0.00211 2.20174 0.68 1.100 35.15 20003 0.46 0.00211 2.20174 0.68 0.10 34.65 1.408 0.0211 2.20174 0.68 0.33 34.65 6.934 0.16 0.00025 25935 0.03 34.65 1.408 0.03 0.00025 25935 0.02 33.65 1.408 0.00055 25935 0.02 0.02 33.65 1.408 0.00055 52666 0.02<	40	41.1			0.02197	3207032	9.84	46.24	15.07
40 330153 7.58 0.01184 1481830 4.55 30.78 39.4 354767 8.14 0.01273 5971143 18.32 26.23 37.15 301168 6.91 0.01080 1126447 3.46 7.90 36.15 118700 2.61 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.00669 697551 2.14 4.45 35.15 20003 0.46 0.00211 220174 0.68 1.00 34.65 1.35 0.00211 220174 0.68 1.00 34.65 0.16 0.00025 250174 0.68 0.10 34.65 0.16 0.00025 250174 0.68 0.10 34.15 1408 0.03 0.00005 5266	39.3	40.4			0.02197	1832610	5.62	36.40	11.86
39.4 354757 8.14 0.01273 5971143 18.32 26.23 37.15 301168 6.91 0.01080 1126447 3.46 7.90 36.15 118700 2.61 0.01080 697551 2.14 4.45 36.15 113700 2.61 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.000608 697551 2.14 4.45 36.15 113700 2.61 0.00069 697551 2.14 4.45 36.15 136.65 58866 1.35 0.00011 2.20174 0.68 1.00 37.15 20003 0.46 0.00211 220174 0.68 0.33 34.15 1408 0.03 0.00025 25935 0.03 0.33 34.15 1408 0.03 0.00005 5266 0.02 0.03 33.65 1408 0.03 0.00005 5266 0.02 0.03 33.65 1408 0.03 0.00005 5266 0.02 0.03 3	38.9	40			0.01184	1481830	4.55	30.78	10.03
37.15 301168 6.91 0.01080 1126447 3.46 7.90 36.65 186498 4.28 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.00408 425268 1.31 2.31 35.65 58866 1.35 0.00011 2.20174 0.68 1.00 35.65 58866 1.35 0.00011 220174 0.68 1.00 35.65 58866 1.35 0.00011 220174 0.68 1.00 35.15 20003 0.46 0.00072 74816 0.23 0.33 34.65 1408 0.03 0.00025 25935 0.08 0.10 34.15 1408 0.03 0.00025 25935 0.02 0.02 33.65 1408 0.03 0.00005 5266 0.02 0.02 33.65 40.4 1.408 1.00 1.00 1.00 1.00 10.4 1.408 1.408 1.4108 1.00 1.00 1.00 33.65 1.408	38.3	39.4			0.01273	5971143	18.32	26.23	8.55
36.65 186498 4.28 0.00669 697551 2.14 4.45 36.15 113700 2.61 0.00408 4.25568 1.31 2.31 35.15 58866 1.35 0.00211 2.20174 0.68 1.00 35.15 23003 0.46 0.00211 220174 0.68 1.00 35.15 20003 0.46 0.00072 74816 0.23 0.33 34.65 6934 0.16 0.00025 25935 0.08 0.10 34.15 1408 0.03 0.000025 255935 0.08 0.10 33.65 40.4 4.45 5266 0.02 0.02 0.02 33.65 40.4 4.64 5266 0.02 0.02 0.02 33.65 140.4 5266 0.02 0.02 0.02 0.02 40.4 5 5266 0.02 0.02 0.02 0.02 33.64 5 5 5 5 5 5 3.64	36.05	37.15			0.01080	1126447	3.46	7.90	2.58
36.15 113700 2.61 0.00408 425268 1.31 2.31 35.65 58866 1.35 0.00211 220174 0.68 1.00 35.15 20003 0.46 0.00211 220174 0.68 1.00 35.15 20003 0.46 0.00072 74816 0.23 0.33 34.65 6934 0.16 0.00025 25935 0.08 0.10 34.15 1408 0.03 0.00005 2566 0.02 0.02 33.65 1408 0.03 0.00005 5266 0.02 0.02 40.4 40.4 1408 10.00 140.4 140	35.55	36.65			0.00669	697551	2.14	4.45	1.45
35.65 58866 1.35 0.00211 0.68 1.00 35.15 20003 0.46 0.0072 74816 0.23 0.33 34.65 6934 0.16 0.00025 74816 0.23 0.33 34.65 6934 0.16 0.00025 25935 0.08 0.10 34.15 1408 0.03 0.00005 25265 0.02 0.02 33.65 40.4 1.408 0.03 0.00005 5266 0.02 0.02 40.4 140	35.05	36.15			0.00408	425268	1.31	2.31	0.75
35.15 20003 0.46 0.00072 74816 0.23 0.33 34.65 6934 0.16 0.00025 25935 0.08 0.10 34.15 1408 0.16 0.00025 25935 0.08 0.10 34.15 1408 0.03 0.00005 5266 0.02 0.02 33.65 40.4 1.408 0.03 0.00005 5266 0.02 0.02 40.4 40.4 1.408 1	34.55	35.65			0.00211	220174	0.68	1.00	0.33
34.65 6934 0.16 0.00025 25935 0.08 0.10 34.15 1408 0.03 0.00005 5266 0.02 0.02 33.65 40.4 36.4 36.4 36.4 36.4	34.05	35.15			0.00072	74816	0.23	0.33	0.11
34.15 1408 0.03 0.0005 5266 0.02 0.02 33.65 40.4 36.4	33.55	34.65			0.00025	25935	0.08	0.10	0.03
33.65 40.4	33.05	34.15			0.00005	5266	0.02	0.02	0.01
40.4	32.55	33.65							
	39.3	40.4						36.4	
Sources: 2001 CEI Bathymetry 2011 LIDaR (2018 analysis)	Old Oaken Bucket								
2001 CEI Bathymetry 2011 LIDaR (2018 analysis)	Sources:								
2011 LIDaR (2018 analysis)	2001 CEI Bathymetry								
	2011 LiDaR (2018 analysi	s)							

		nillion gal	133.40	90.02	52.07	36.46	16.16	9.48	4.22	2.14	0.76	0.31	
	je Volume	miii	409.39	276.27	159.79	111.90	49.59	29.10	12.96	6.57	2.33	0.96	
	Total Storage Volume	acre-ft	12	18	38	31	6t	LS LS	38	24	38	96	
		acre-ft	133.3	116.48	47.8	62.3	20.4	16.3	9	4	1.	00	
	e Volume	ē	43378380	37955662	15603406	20303562	6676153	5261528	2080145	1382258	448203	311459	
	Incremental Storage Volume	gal											
		sq mi	0.10400	0.09100	0.07482	0.06491	0.05336	0.01261	0.00997	0.00663	0.00215	0.00075	
		icres s	66.56	58.24	47.88	41.54	34.15	8.07	6.38	4.24	1.38	0.48	
		'n	2899423	2536967	2085872	1809461	1487453	351682	278075	184781	59916	20818	
	Area	Sq ft											
5		1988 Datum 1929 Datum Sq ft	27.1	25.1	23.1			20	18	17	16	15	13
(SISAIPUP OT NZ) V	Elevation	1988 Datum	26	24	22	21	19.5	18.9	16.9	15.9	14.9	13.9	11.9

NS-8-2

	KIEW'S CALLOS TOC 1-23-19
CJCH Culvert Rating Curve - Minimum Reservoir Pool El. 36.5 ft	PSI V-DISCHARGE CURS-EXISTING
First Herring Brook - CICH	

 Weir flow up to HW El. 37.3 ft; Q = C L H^A1.5 ; C = 2.6 (broad crested weir); L = 10.5 ft; C = 2.6 H = HW - Reservoir Level

С= 2.0 п=пw-кез L= 10.5 2) Orifice flow above HW El. 37.3 ft; $Q = C A (2 g Ho)^{\Lambda 1/2}$

C = 0.6 H = HW - Reservoir Level

A= 47

3) Weir flow over CICH above El. 42.3 ft; Q = C L H^1.5; C = 2.6 H = HW - Reservoir Level

L = 100 + (160.6 × (HW - 42.3))

Total Q (cfs) 156 194 261 202 226 320 392 453 16 36 61 89 10 20 506 H 4 0 2 Q (cfs) Roadway (11) H Ľ Q (cfs) 156.3 194.3 260.6 202.4 226.3 452.6 320.0 392.0 16.0 35.9 60.5 506.0 0.0 89.1 0.9 4.5 19.5 2.4 9.7 Culvert H (ft) 0.00 0.20 0.70 1.20 1.70 2.20 3.20 3.70 0:30 4.50 0.10 0.50 0.80 0.80 1.00 2.00 3.00 4.00 5.00 HW EL. (ft) 32.8 33.0 33.5 34.0 34.5 35.0 36.0 36.5 36.6 36.8 37.0 37.5 38.5 37.3 37.3 39.5 40.5 41.5 37.3 Reservoir EI. (ft) Level 32.8 32.8 32.8 32.8 32.8 32.8 32.8 32.8 32.8 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 Invert Culvert Low Reservoir **Crown** Culvert **Crown** Culvert Minimim Fishway Operation begin orifice flow

P9.9-

KEN'S CALOS FOC 1-23-19 BUN- DISOHARCE EURIRS-EXISTING

545	577	40	0	0	101	0	71	175	237	285	311	358	687	1,398	2,578	4,303	6,639	9,647	13,380	23,226	36,550
											0	31	323	1000	2150	3846	6155	9137	12846	22646	35928
											0.0	0.2	0.7	1.2	1.7	2.2	2.7	3.2	3.7	4.7	5.7
											42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3
545.0	577.0	39.9	0.0	0.0	100.9	0.0	71.3	174.7	236.6	285.4	311.0	326.9	363.8	397.2	428.0	456.8	483.9	509.5	533.9	579.6	621.9
5.80	6.50	2.00	0.00	0.00	0.20	0.00	0.10	0.60	1.10	1.60	1.90	2.10	2.60	3.10	3.60	4.10	4.60	5.10	5.60	6.60	7.60
42.3	43.0	38.5	38.9	39.3	39.5	40.4	40.5	41.0	41.5	42.0	42.3	42.5	43.0	43.5	44.0	44.5	45.0	45.5	46.0	47.0	48.0
36.5	36.5	36.5	38.9	39.3	39.3	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4
			High Reservoir (existing)	Tom - Top of Weir corrected																	

pg. 9-2

9	> + I CIX							p	Curve	2							Total Q (cfs)	0	30	86	139	441	1143	1803	4166	5574	9891
NEN'S CALCS TEC 1-23-19 BI - DISCHARGEN GURASS EVICTION	4			and CJCH	Pg 15 of	Reservoir Dam	TICP No	Tack Factory Pond	Discharge Rating Curve	by: TCC; Ch'd: NM	 Weir flow over embankment above El. 40.7 ft; Q = C L Hb^1.5; 10/10/2017 					nent	Q (cfs)			0	23	271	912	1,532	3,796	5,158	9 361
22	<u> </u> 			TFP dam a	l. 39.3 ft			A1.5;			:L Hb^1.5;					Embankment	H (ft)			0.00	0:30	0.80	1.30	1.60	2.30	2.60	02.6
CS 7			STING	II flow over	num Pool E	4		t; Q = C L H	0.7		1.7 ft; Q = C	40.7					HW EL.			40.7	41.0	41.5	42.0	42.3	43.0	43.3	44.0
CAL	2		DR TFP EXIS	ert flow - A	ve - Minim	First Herring Brook - TFP		re El. 39.3 f	H = HW - 40.7		bove El. 40	Hb = HW - 40.7	- 40.7)			ed	Q (cfs)	0	30	86	115	170	231	270	370	416	530
5 24	2		G CURVE F(ninate culvi	Rating Cur	rst Herring		gates abov	2.6	20	ankment a	2.6	L = 182 x (HW - 40.7)			Gates Full Closed	H (ft)	0.00	0.70	1.40	1.70	2.20	2.70	3.00	3.70	4.00	4.70
7 9		Ŧ	Ken - USE THIS RATING CURVE FOR TFP EXISTING	Tom Corrected to eliminate culvert flow - All flow over TFP dam and CJCH	TFP Dam Discharge Rating Curve - Minimum Pool El. 39.3 ft	E		 Weir flow over TFP gates above EI. 39.3 ft; Q = C L H^1.5; 	ő	=]	w over emb	5	-			Gat	HW EL. (ft)	39.3	40.0	40.7	41.0	41.5	42.0	42.3	43.0	43.3	44.0
		ild @ 40.5	(en - USE	fom Corre	TFP Darr			l) Weir flo			!) Weir flo				TFP	Levef	El. (ft)	39.3		40.7				42.3			
		yellow - used in HEC-HMS model. K.S, combined Culvert and Overtop values with Res held @ 40.5 ft		F				1			2							top of gates		top of bridge				CICH low polint			
		ned Culvert and Over	(I)				0	71.34098	174.749	236.6113	285.3639	310.9681	357.6501	687.2255	1397.665	2577.751	4302.831	6639.185	9646.613	13380.02	23225.75	36549.8					
		K.S, combi	levation (F				40.4	40.5	41.0	41.5	42.0	42.3	42.5	43.0	43.5	44.0	44.5	45.0	45.5	46.0	47.0	48.0					
	TOM	IMS model.	Elevation (Discharge Discharge Elevation (Ft)		4		0	11	175	237	285	311	358	687	1,398	2,578	4,303	6,639	9,647	13,380	23,226	36,550					
		HEC-	harge	0	71	175	237	285	327	364	397	416	459	780	1,484	2,659	4,380	6,713	9,717	13,447	23,288	36,608					
	KEN	ied in	Disc																								

•

Pa 9-3

BUV - DISCHARGE CURVES - EXIST 12th 's CALCS TOC 1-23-19

Alternative 8A - Proposed Spillway Replacement w/ Low - Normal Gate Operation

Spillway Rating Curve - Existing Crest with New Gate Crest (Ogee Discharge Coefficient) and additional Gated spillway

First Herring Brook - Reservoir Dam

																		num water leve	ad with 2.5 ft v	freeboard with								
4	ste guides																	Use El. 42.0 ft as maximum water level	to provide 0.5 ft freeboad with 2.5 ft wave	for 50 mph wind; 0.2 ft freeboard with 2.8 ft	wave for 100 mph wind.							
Existing Ogee-shaped Spillway Crest vav Crest = El. 36.4 ft 36.4 ft	ey minus		dth)			Total Q (cfs)	0	131	447	741	905	974	1080	1303	1459	1663	1875	2141	2324	2560	2804	2854	3266	3906	4666	7582	11225	15461
)gee-shapec = El. 36.4 ft	i ft per surv	_	500 ft (dam width)	10		Q (cfs)																	246	713	1300	3677	6755	10400
Existing C way Crest	36.5	3.1	50(2.6	Dam	H (ft)																	0.33	0.67	1	2	'n	4
Existing Ogee-shaped Lower Existing Spilway Crest = El. 36.4 ft	. -	υ	ب	U		EL.																	45.33	45.67	46	47	48	49
Lower						Q (cfs)	0	131	447	741	305	974	1080	1303	1459	1663	1875	2141	2324	2560	2804	2854	3019	3194	3366	3905	4470	5061
NAVD 1988	36.4 ft 0 ft	3.1			Spillway	H (ft)	0.00	1.10	2.50	3.50	4.00	4.20	4.50	5.10	5.50	6.00	6.50	7.10	7.50	8.00	8.50	8.60	8.93	9.27	9.60	10.60	11.60	12.60
Q = CLH ^{3/2}	New Crest El. = L	U	Dam -			EL.	36.4	37.5	38.9	39.9	40.4	40.6	40.9	41.5	41.9	42.4	42.9	43.5	43.9	44.4	44.9	45.00	45.33	45.67	46	47	48	49
	New (ľ	I											1/2 PMF			op of dam							

÷

P. 9-4

KAN'S CALES TEC 1-23-19

yellow - used in HEC-HMS model for existing dam. Identical to discharge curve modeled in 60% design K.S.

				in actuality it would control to maintain 40.4 but for flood simulate full on/off (i.e. max Q for values > 40.4, zero for values < 40.4)																			
0	0	0	0	0	10	905	974	1080	1303	1459	1663	1875	2141	2324	2560	2804	2854	3266	3906	4666	7582	11225	15461
36.4	37.5	38.9	39.9	40.39	40.4	40.41	40.6	40.9	41.5	41.9	42.4	42.9	43.5	43.9	44.4	44.9	45.00	45.33	45.67	46	47	48	49
	0	116	329	604	930	1300	1751	2306	5814	6357	7192	9946	14131										
	38.9	39.9	40.9	41.9	42.9	43.9	45	45.43	46.83	47	47.25	48	49										

Ken's calls tec 1-23-19	BLV - DISCHARGE CURVES - 18XISTING																						
CALCS	CHARGE		ft				Total Q (cfs)	c		116	163	200	237	258	283	336	654	1287	2102	2284	4389	6945	9883
SIN2	- 015	E	22.1 ft			(Vay	Q (cfs)									30	340	962	1767	1947	4033	6571	9491
X	NB.	Bucket Da	ay El. =	370 ft	2.6	Dam (Country Way)	H (ft)									0.1	0.5	1.0	1.5	1.6	2.6	3.6	4.6
		First Herring Brook - Country Way / Old Oaken Bucket Dam	Country Way El. =		J	Dam	Water El.									22.2	22.6	23.1	23.6	23.7	24.7	25.7	26.7
	ating Curve	untry Way					Q (cfs)	c		116	163	200	237	258	283	306	314	325	335	337	356	374	392
	Discharge Rating Curve	g Brook - Co	gn/~u~u~ ine culverts	17.2 fi		Culvert	(tł) H	c	, ,	Ч	2	ε	4.2	Ś	9	7	7.4	7.9	8.4	8.5	9.5	10.5	11.5
	:	First Herrin	c.u~(ngz) A 0.0 = U. , 3 x 4 ft stone culv	crown culverts =	h = El. Water -15.2		Water EL. NGVD 1929	15.7		16.2	17.2	18.2	19.4	20.2	21.2	22.2	22.6	23.1	23.6	23.7	24.7	25.7	26.7
			u = ۲۰۰۰ مردی ع A = 24 sq ft (2, 3 x 4 ft stone culverts)	crown	h = El. W	SVD1929					crown culv					ave crown							
			A			NAVD88 + 0.8 ft = NGVD1929	Water El. NAVD88	14.4		15.4	16.4	17.4	18.6	19.4	20.4	21.4	21.8	22.3	22.8	22.9	23.9	24.9	25.9

Pg. 9-6

BLV-DISCHARDE CURVES-BXISANE leavis cares tec 1-23-19

> First Herring Brook - Old Oaken Bucket Dam Spillway **Discharge Rating Curve**

From Reference 1): Old Oaken Bucket Dam Phase I Inspection Report,

1287 2102 2284 4389 Spillway yellow - used in HEC-HMS model. K.S. Country Way 0 116 283 336 163 200 237 258 654 1287 2102 2284 4389 19.4 16.2 17.2 21.2 22.6 23.6 15.2 18.2 20.2 22.2 23.1 23.7 24.7 NAVD88 NGVD Check datum 14.4 15.4 16.4 17.4 18.6 19.4 20.4 21.4 21.8 22.3 22.8 22.9 23.9 which is approximately 1 ft freeboard on Country Way. Spillway and outlet works flow capacity with pond at El. 21.4 ft, Country Way controls water levels at Flow greater than 24 cfs 199 cfs 113 cfs **38 cfs** 24 cfs Total flow with 1 ft freeboard on Spillway crest @ El. 18.6 NGVD approximately 300 cfs. 10-yr storm = 405 cfs gate abutments Country Way fish ladder ogee - weir gate

Ò 0 0 Q 0 43 144 280

654

6945 9883

6945 9883

25.7 26.7

24.9 25.9

2-6.6d

KEN'S CALGS TCC 1-23-19 BLY-DISENTAGE CUARES-RXISTING

First Herring Brook - Country Way / Old Oaken Bucket Dam $\label{eq:Q} Q = CLH^{3/2}$ **Discharge Rating Curve**

Spillway crest

19.4 ft 23 ft 2.6 o _

NAVD88 + 0.8 ft = NGVD1929

	Fotal Q (cfs)	0	0	0	0	0	43	144	280
/ay)	Q (cfs)								
Dam (Country Way)	H (ft)								
Dam (Water El. H (ft) Q (cfs) Fotal Q (cfs)								
	Q (cfs)	0	0	0	0	0	43	144	280
	H (ft)	0	0	0	0	0	0.8	1.8	2.8
	Water EL. NGVD 1929	15.2	16.2	17.2	18.2	19.4	20.2	21.2	22.2
VD1929				crown culv					
88 + 0.8 ft = NGVD1929	Water El. NAVD88	14.4	15.4	16.4	17.4	18.6	19.4	20.4	21.4
8									

1- a1 .6d

Elevation I Discharge (CFS)	0.00	159.52	225.60	276.30	302.67	349.77	680.16	1391.21	2571.76	4297.23	6633.90	9641.59	13375.23	23221.34	36545.69	
levation (C	40.5	41.0	41.5	42.0	42.3	42.5	43.0	43.5	44.0	44.5	45.0	45.5	46.0	47.0	48.0	

fow - used in HEC-HMS model. K.S, combined Culvert and Overtop values with Res held @ 40.5 ft

÷														
scharge (CFS	0.00	159.52	225.60	276.30	302.67	77.9AE	680.16	1391.21	2571.76	4297.23	6633.90	9641.59	13375.23	
Elevation Discharge (CFS)	40.5	41.0	41.5	42.0	42.3	42.5	43.0	43.5	44.0	44.5	45.0	45.5	46.0 1	

																						yelfo	Elev															
	Q (cfs) Total Q (cfs)	0	2	16	36	61	68	156	194	261	-1	4	10	20	202	226	320	392	453	506	545	277	4D	0	160	226	276	303	350	680	1,391	2,572	4,297	6,634	9,642	13,375	23,221	36,546
	Q (cfs)																											0	31	323	1000	2150	3846	6155	9137	12846	22646	35928
Roadway	H (ft)																											0.0	0.2	0.7	1.2	1.7	2.2	2.7	3.2	3.7	4.7	5.7
	EL																											42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3	42.3
	Q (cfs)	0.0	2.4	16.0	35,9	60.5	89.1	156.3	394.3	260.6	0.9	4.5	9.7	19.5	202.4	226.3	320.0	392.0	452.6	506.0	545.0	577.0	39,9	0.0	159.5	225.6	276.3	302.7	319.0	356.7	390.8	422.1	451.2	478.6	504.5	529.1	S75.2	617.8
Culvert	H (ft)	0.00	0.20	0,70	1.20	1.70	2.20	3.20	3.70	4,50	0.10	0.30	0.50	0.80	0.80	1.00	2.00	3.00	4.00	5.00	5.80	6.50	2.00	0.00	0.50	1.00	1.50	1.80	2.00	2.50	3.00	3.50	4.00	4.50	5.00	S.50	6.50	7.50
	HW EL (ft)	32.8	33.0	33.5	34.0	34.5	35.0	36.0	36.5	37.3	36.6	36.8	37.0	37.3	37.3	37.5	38.5	39.5	40.5	41.5	42.3	43.0	38,5	40.5	41.0	41.5	42.0	42,3	42.5	43.0	43.5	44.0	44.5	45.0	45.5	46.0	47.0	48.0
Level	EI. (ft).	32.8	32.8	32.8	32.8	32.8	32.8	32.8	32.8	32.B	36.5	36.5	36.5	36.5	36.5	36.5	36.5	36.5	36.5	36.5	36.5	36.5	36.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5
		Invert Culvert	Low Reservoir							Crown Culvert	Minimim Fishway Operation			Crown Culvert	begin orifice flow									High Reservoir														

.

Ken's CALOS TCC 1-23-19 RELV-DISCHARGE CUAVES RESERVE

CICH Culvert Rating Curve - Minimum Reservoir Pool El. 36.5 ft First Herring Brook - CJCH

.

Weir flow up to HW El. 37.3 ft; Q = C L H^1.5; C = 2.6 (broad created weir); L = 10.5 ft; C = 2.6 H = HW - Reservoir Level L = 10.5

2) Ortfice flow above HW EI. 37.3 ft; Q = C A (2 g Ho)^{\Lambda}J/2 C = 0.6 H = HW - Reservoir Level

47 = Y

3) Weir flow over CJCH above EI. 42.3 ft; Cl = C L H^1.5; C = C L H - Reservoir Level L = 60.6 x (HW - 42.3))

	BUV - DISCHARGE CURVES				yellow - used in HEC-HMS model, K.S.	36.4 D	37.5 0	0 5/68		40.4 10 40.41 905			41.5 1303		42.9	43.5	to province us in inceptionary with 2.5 it wave 44.9 2.44 for the eboard with 2.8 it 44.4 2560		45.00 2854		46 4666	4/ 7362 4/11275		
tre Ope Dischart 36. 10 11 136. 136. 131. 1308 1308 1308 1308 1308 1308 1308 1308		ent w/ l - Normal Gá w Gate Crest (Ogee I		36.5 ft per survey 3.1	500 ft (dam widt 2.6																			
w Gate Crest (Ogee Discharge Coefficient) w Gate Crest (Ogee Discharge Coefficient) isting Ogee-shaped Spillway Creat y Creat = El. 36.4 ft 36.4 ft 36.5 ft per survey minus 6° gate guides 3.1 500 ft (dam width) 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.6 1.1 2.7 2.7 2.2 1.1 2.2 2.7 2.2 1.1 2.2 2.2 2.2 2.2 2.2 2.2		vay Replacem Crest with Ne Jam	Ex listing Spilwa		J U														EE 59	45.67	46	14	64	
Ary Replacement w/ 1 - Normal Ida Crest with New Gate Crest (Ogee f Bam L 36.5 ft per survey C 3.1 L 36.5 ft per survey C 3.1 L 500 ft (dam widt) C 2.6 Am EL H (ft) Q (cfs) [0] 45.333 45.333 45.333 45.333445 45.3334545575455767676767676767676767676767676		sposed Splitu ve - Existing - Reservoir D	88 Lower Ea	- 4			Q (cfs)	151	447	16/	974	1080	1459	1663	1875	2141	2560	2804	9019	3194	3366	4470	2061	
posted Spillway Replacement w/ 1 - Normal Ga Reservoir Dam Existing Ogee-shaped Si Raservoir Dam Existing Ogee-shaped Si R Lower Existing Spilway Crest = EI. 36.4 ft 4 ft 0 ft L 36.5 ft per survey 1 C 3.1 0 ft L 36.5 ft per survey 1 C 3.1 0 ft L A ft 1 C 3.1 1 C 2.6 1 C 3.1 1 C 2.6 1 1 0 fright 1 0 0 1 1 0 1 1 1 1 0 0 1 4 1 1 1 2 1 2 3 1 3 3 1 4 3 1 4 3 1 3 4 <		ttive BA - Pro y Rating Cur erring Brook -			Dam -	Spillway																		
BA - Proposed Spillway Replacement ifing Curve - Existing Spilway Crest with New 6 g Brook - Reservoir Dam Existing Existing Spilway Crest with New 6 a 4 th MAVD 1988 Lower Existing Spilway CL 36.4 th Existing Crest 1.1 JA th 0.1 C JA th 1.1 C JA th 1.2 JA th JA th 45.3 JA JA t					틒			5'ZE	38.9	40.4	40.6	40.9	41.5	42.4	42.9	43.5	44.4	44.9	45.33	45.67	9 6	; 4	49	

Ĩ

2-01.60

Ken's CALCS TOC 1-23-19	BUV-9 ISCHARDE CURVES	1							yellow - used in HEC-HMS model. K.S.	15.2 0	16.2 116	17.2 163	18.2 200	19.2 231	20.2 258	21.2 283	22.1 304	22.6 654	23.1 1287	23.6 2102	23.7 2284	24.7 4389	25.7 6945	26.7 9883
Len's C	BUV - 9 (S	Discharge Rating Curve	First Herring Brook - Old Oaken Bucket Dam Spillway	From Reference 1): Old Oaken Bucket Dam Phase I Inspection Report,		Spillway and outlet works flow capacity with pond at El. 21.4 ft,	which is approximately 1 ft freeboard on Country Way.	113 cfs	38 cfs			24 cfs	24 cfs		t freeboard on	199 cfs		Country Way controls water levels at Flow greater than) cfs,		cfs			
		Discha	First Herring Brook	From Reference 1)		Spillway and outlet	which	ogee - weir	Q (cfs) fotal Q (cfs gate abutments			gate	fish ladder		Total flow with 1 ft freeboard on	Country Way		Country Way contr	approximately 300 cfs.		10-yr storm = 405 cfs			
					22.1 ft				rotal Q (c	¢	116	163	200	231	258	283	304	654	1287	2102	2284	4389	6945	9883
			ket Dam		22	370 ft	2.6	y Way)	Q (cfs)								0	340	962	1767	1947	4033	6571	9491
			aken Bucl		Vay El. =			Dam (Country Way)	(IJ) H								0	0.5	1.0	1.5	1.6	2.6	3.6	4.6
		ē,	o pio / ke	Q = CLH ^{W2}	Country Way El. =	-	U	Dar	Water El.								22.1	22.6	23.1	23.6	23.7	24.7	25.7	26.7
		ating Curv	ountry W		(s	ft			Q (cfs)	0	116	163	200	231	258	283	304	314	325	335	337	356	374	392
		Discharge Rating Curve	g Brook - C	gh)^0.5	ne cuivert	17.2 ft		Culvert	H(ft)	0	1	2	'n	4	ŝ	9	6.9	7.4	7.9	8.4	8.5	9,5	10.5	11.5
		ő	First Herring Brook - Country Way / Old Oaken Bucket Dam	Q = 0.6 A (2gh)^0.5	3 x 4 ft sto	crown culverts =	ter -15.2		Water EL.	15.2	16.2	17.2	18.2	19.2	20.2	21.2	22.1	22.6	23.1	23.6	23.7	24.7	25.7	26.7
			-	9	A = 24 sq ft (2, 3 x 4 ft stone culverts)	Crown	h = El. Water -15.2		-1			crown cufy					ave crown							

 \mathbf{e}

09.10-3

i.

KEN'S CALCS JCC 1-23-19 DAM BREAK INPUT

Reservoir Dam HEC-HMS Dam Failure Analysis heters

T. Cook	5-Nov-18			
		Single Dam Reservoir Dam	Single Dam Reservoir Dam	Single Dam Reservoir Dam
	Failure D	Embankment Overtopping Erosion	Embankment Overtopping Erosion	Embankment Overtopping Erosion
	Rair	1/2 PMF	1/2 PMF	1/2 PMF
	Ba	Existing Scenario 1A	Existing Scenario 1B	Existing Scenario 1C
	Elem	Reservoir Dam	Reservoir Dam	Reservoir Dam
		Overtop Breach	Overtop Breach	Overtop Breach
		Main	Main	Main
*Тор	Elevation (ft	45.0	45.0	45.0
*Bottom	Elevation (ft	43.9	43.9	43.9
	*Bottom	200	200	200
	*Left Slor	1	1	1
	*Right Slor	1	1	1
* Piping	Elevation (ft	n/a	n/a	n/a
	*Piping C	n/a	n/a	n/a
*D	evelopment	2	6	0.25
	Trigge	Elevation	Elevation	Elevation
*Trigger	Elevation (ft	45.0	45.0	45.0
*	Trigger Duri	n/a	n/a	n/a
	Progressio	linear	linear	linear

OK

OK

.

REN'S CALOS TOC 1-23-19 DAM BREAK INPUT

Reservoir Dam HEC-HMS Dam Failure Analysis I

T. Cook	5-Nov-18	To Be Verified		
		Single Dam	Single Dam	Single Dam
		Reservoir Dam	Reservoir Dam	Reservoir Dam
	Failure D	Embankment Overtopping Erosion	Abutment Piping Erosion	Abutment Piping Erosion
	Rair	1/2 PMF	1/2 PMF	1/2 PMF
	Ba	Existing Scenario 2	Existing Scenario 3	Proposed Scenario 4
	Elem	Reservoir Dam	Reservoir Dam	Reservoir Dam
		Overtop Breach	Piping Breach	Piping Breach
		Main	Main	Main
*Тор	Elevation (ft	45.0	45.0	45.0
*Bottom	Elevation (ft	43.9	41.5	43.9
	*Bottom	100	25	25
	*Left Slop	1	1	1
	*Right Slop	1	1	1
* Piping	Elevation (ft	n/a	43.5	39.1
	*Piping C	n/a	0.8	0.8
*D(evelopment	2	0.25	0.25
	Trigge	Elevation	Elevation	Elevation
*Trigger i	Elevation (ft	45.0	45.0	43.5 (just below Peak Elevation 1/2 PMF no failure)
•	Trigger Dur:	n/a	n/a	n/a
	Progressio	linear	linear	linear

OK

OK

did not breach

P9.11-2

KEN'S CALCS TCC 1-23-19 DAM BREAK INPUT

Reservoir Dam HEC-HMS Dam Failure Analysis I

T. Cook	5-Nov-18	Single Dam Reservoir Dam	Single Dam Reservoir Dam	Single Dam Reservoir Dam
	Failure D	Spillway Gate Failure	Spillway Gate Failure	Abutment Piping Erosion
	Raiı	1/2 PMF	Sunny Day (low flow normal pond)	Sunny Day (low flow normal pond)
	Ba	Proposed Scenario 5	Proposed Scenario 6	Proposed Scenario 7
	Elem	Reservoir Dam	Reservoir Dam	Reservoir Dam
		Overtop Breach (use adjusted spillway rating curve without HMS failure routine)		Piping Breach - Adjusted initial elevation of dam to 40.3998 ft (1/10,000 of an inch below trigger elevation, 2/10,000ths below gate open/close
		Main	Main	Main
*Top	Elevation (ft	40.4	40.4	40.4
*Bottom	Elevation (ft	36.4	36.4	36.4
	*Bottom	36.6	36.6	36.6
	*Left Slop	c 0.1	0.1	0.1
	*Right Slop	. 0.1	0.1	0.1
* Piping	Elevation (ft	n/a	n/a	39.1
	*Piping C	n/a	n/a	0.8
*Di	evelopment	0.08	0.08	0.25
	Trigge	Elevation	Elevation	Elevation
*Trigger	Elevation (ft	43.5 (just below Peak Elevation 1/2 PMF no failure)	40.4025	40.3999
*	Trigger Dur	n/a	n/a	n/a
	Progressio	linear	linear	linear

combined spillway and dam br Tack Factory Pond seems to dr Tack Factory Pond seems to

.

19.11-3

Reservoir Dam HEC-HMS Dam Failure Analysis I

KEN'S CALES TEC 1-23-19 DAM BREAK INPUT

T. Cook	5-Nov-18	Added	Added	Added
		Multiple Dam Reservoir Dam	Multiple Dam Reservoir Dam	Multiple Dam Reservoir Dam
	Failure D	Embankment Overtopping Erosion	Spillway Gate Failure	Spillway Gate Failure
	Rair	1/2 PMF	1/2 PMF	Sunny Day (low flow normal pond)
	Ba	Existing Scenario 8	Proposed Scenario 9	Proposed Scenario 10
	Elem	Reservoir Dam	Reservoir Dam	Reservoir Dam
		Overtop Breach	Overtop Breach (use adjusted splilway rating curve without HMS failure routine)	Overtop Breach (use adjusted spillway rating curve without HMS failure routine)
		Main	Main	Main
*Тор	Elevation (ft	45.0	40.4	40.4
*Bottom	Elevation (ft	43.9	36.4	36.4
	*Bottom	200	36.6	36.6
	*Left Slor	1	0.1	0.1
	*Right Slop	1	0.1	0.1
* Piping	Elevation (ft	n/a	n/a	n/a
	*Piping C	n/a	n/a	n/a
*Di	evelopment	2	0.08	0.08
	Trigge	Elevation	Elevation	Elevation
*Trigger	Elevation (ft	45.0	43.5 (just below Peak Elevation 1/2 PMF no failure)	40.4025
•	Trigger Dur	n/a	n/a	n/a
	Progressio	linear	linear	linear

drain too far down (below res dam levels)

		KEN'S CAU DAM BREA	LS TEC 1-23-19 NC INDUT
	Old Oaken Bucket	Old Oaken Bucket	Old Oaken Bucket
Failure Dr	Embankment Overtopping Erosion	Embankment Overtopping Erosion	Embankment Overtopping Erosion
Rain	1/2 PMF	1/2 PMF	Sunny Day (low flow normal pond)
Ва	Existing Scenario 8	Proposed Scenario 9	Proposed Scenario 10
Elem	Old Oaken Bucket	Old Oaken Bucket	Old Oaken Bucket
	Overtop Breach	Overtop Breach	Overtop Breach
	Main	Main	Main
*Top Elevation (ft NAVD88 = NGVD1!	21.3	21.3	21.3
*Bottom Elevation (ft	12.45 (streambed at toe of dam per dam safety inspection report	12.45	12.45
*Bottom *	200	200	200
*Left Slor	1	1	1
*Right Slop	1	1	1
* Piping Elevation (ft	n/a	n/a	n/a
*Piping C	n/a	n/a	n/a
*Development	2	2	2
Trigge	Elevation	Elevation	Elevation
*Trigger Elevation (ft	22.6	22.6	22.6
*Trigger Dura	n/a	n/a	n/a
Progressio	linear	linear	linear

.

ng. 11-5

.

KEN'S CALES TEC 1-23-19 DAM BREAK INOUT

Adjusted spillway curve for gate failure

Spillway Rating Curve - Existing Crest with New Gate Crest (Ogee Discharge Coefficient) and additional Gated spillway First Herring Brook - Reservoir Dam

Q = CLH^{3/2}

	ft	¥		
	36.4	0	3.1	
NAVD 1988	New Crest El. =	_	J	

Dam -

	Q (cfs)	0	131	447	741	905	974	1080	1303	1459	1663	1875	2141	2324	2560	2804	2854	3019	3194	3366	3905	4470	5061
Spillway	H (ft)	0.00	1.10	2.50	3.50	4.00	4.20	4.50	5.10	5.50	6.00	6.50	7.10	7.50	8.00	8.50	8.60	8.93	9.27	9.60	10.60	11.60	12.60
	EL.	36.4	37.5	38.9	39.9	40.4	40.6	40.9	41.5	41.9	42.4	42.9	43.5	43.9	44.4	44.9	45.00	45.33	45.67	46	47	48	49

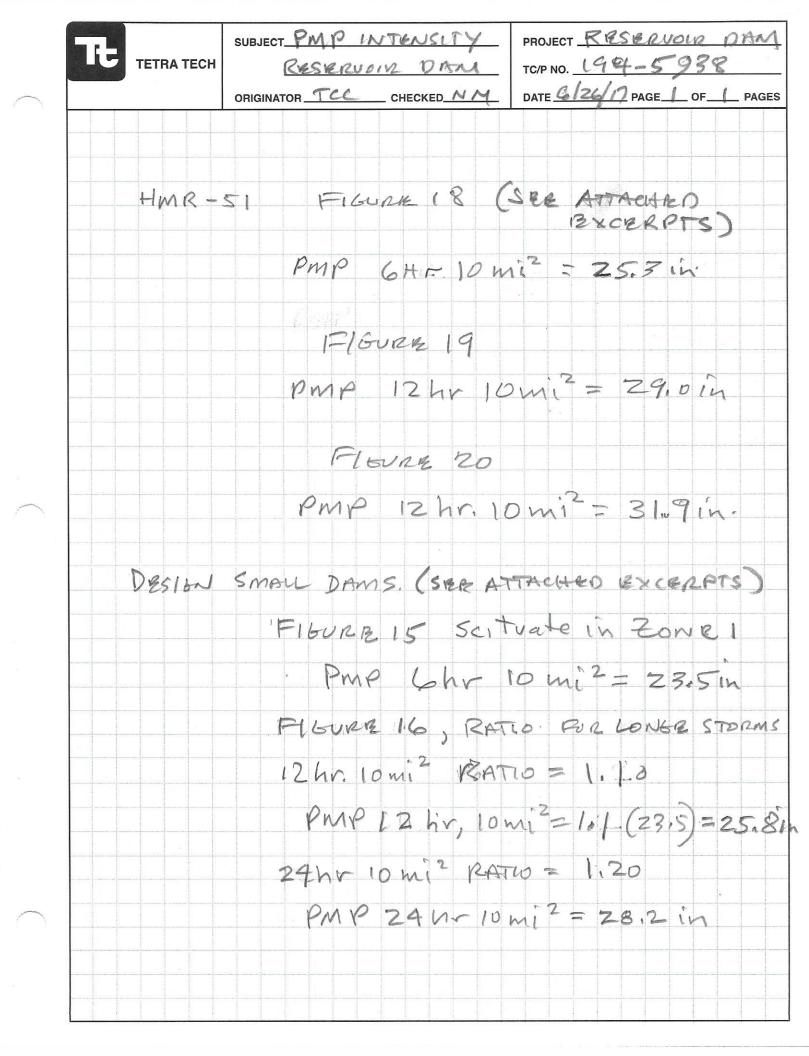
Ken's cares Tec 1-23-19 L-11-50 DAM BREAK INPUT 36.5 ft per survey minus 6" gate gui 3.1 Lower Existing Spilway Crest = El. 36.4 ft Q (cfs) 1300 3677 6755 10400 246 713 500 ft (dam width) 2.6 Existing Ogee-shaped Spillway Crest Dam H (ft) 0.33 0.67 1 N m 4 **_** 0 ں ـ 45.33 45.67 46 47 49 Ŀ

KEN'S CALES TEC 1-23-19 DAMI BREAK INDUT

used in HEC-HMS for spillway gate failure (full open)

0	131	447	741	905	974	1080	1303	1459	1663	1875	2141	2324	2560	2804	2854	3266	3906	4666	7582	11225	15461
36.4	37.5	38.9	39.9	40.4	40.6	40.9	41.5	41.9	42.4	42.9	43.5	43.9	44.4	44.9	45.00	45.33	45.67	46	47	48	40
													ft								

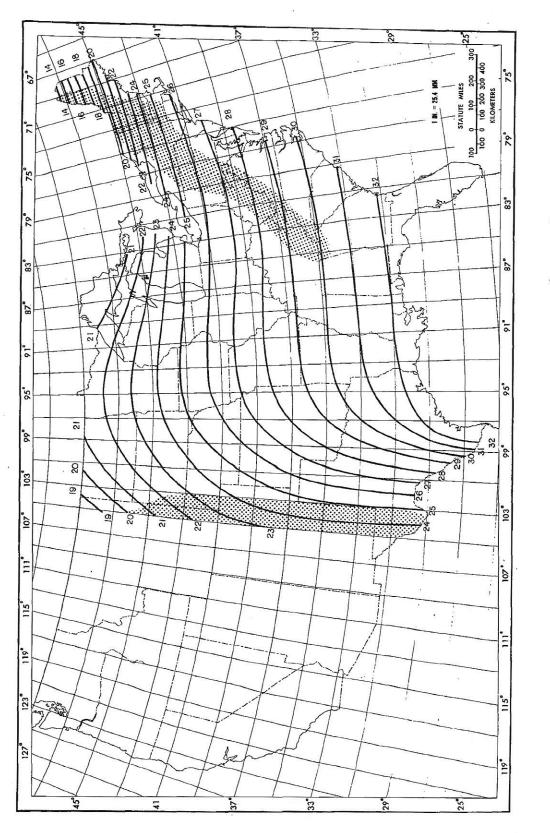
8-11-80

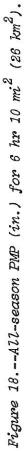

to provide 0.5 ft freeboad with 2.5 ft wave for 50 mph wind; 0.2 ft freeboard with 2.8 Use El. 42.0 ft as maximum water level wave for 100 mph wind. Total Q (cfs) 11225 1080 1303 1459 1663 1875 2141 2324 2324 2324 23560 2864 2854 3266 3906 4666 7582 15461 905 974 131 447 741 0

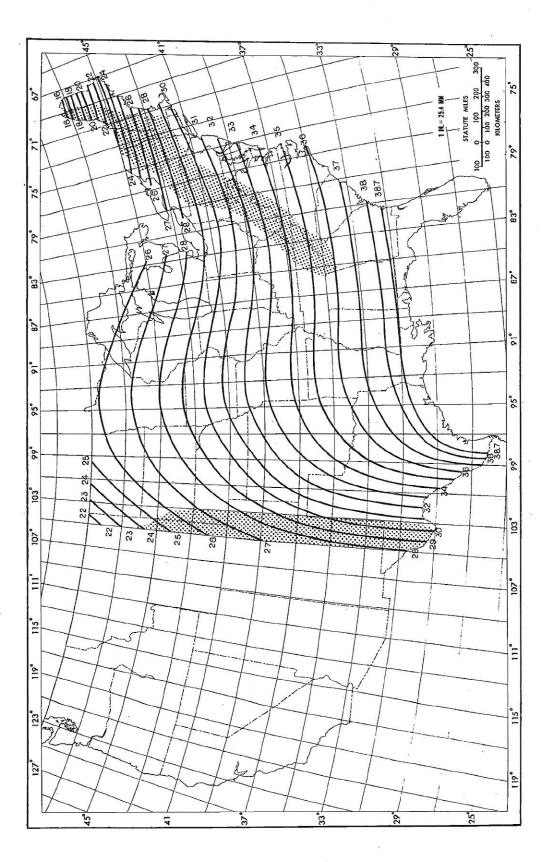
36.4 ft

ides

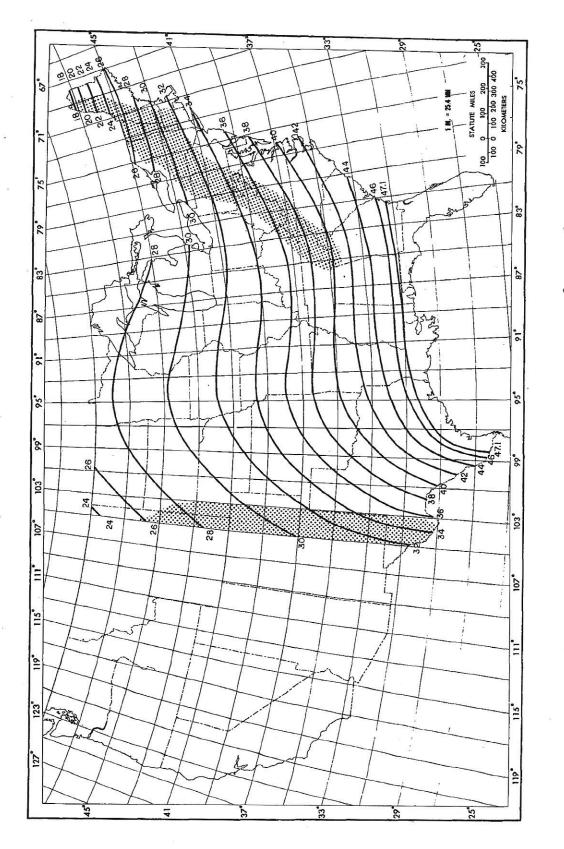
ATTACHMENT 2 HMR-51 PMP INTENSITY CALCULATIONS

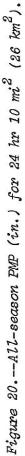





Probable Maximum Precipitation Estimates, United States East of the 105th Meridian

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF THE ARMY CORPS OF ENGINEERS


Washington, D C June 1978



APPENDIX A PROBABLE MAXIMUM FLOOD COMPUTATION

Methodology

The probable maximum flood (PMF) for a watershed is defined as the flood which occurs during the probable maximum precipitation (PMP) event. "Design of Small Dams", published by U.S. Department of the Interior, Bureau of Reclamation, defines this precipitation amount to be approximately 23.5 inches near Scituate, MA for the 6-hour storm event. Precipitation values can be adjusted for longer storm durations (12-hour, 24-hour, etc.) using appropriate figures in Design of Small Dams.

The Natural Resources Conservation Service (NRCS) hydrologic curve number (CN) method, as outlined in Technical Release 55 (TR-55), and Hydrology and Floodplain Analysis (Bedient 2013) was used to calculate the PMF given the PMP.

The peak flow for 1 inch of rainfall excess is defined as:

$$Q_p = \frac{484A_m}{T_R}$$

where

 A_m = area of the watershed (sq mi) T_R = time of rise (hr)

The time of rise is calculated with the following equation:

$$T_R = \frac{D}{2} + t_p$$

where:

D = storm duration (hr) $t_p = lag time from centroid of rainfall to Q_p (hr)$

The lag time is computed with the following equation:

$$t_p = \frac{L^{0.8}(S+1)^{0.7}}{1900\sqrt{y}}$$

where:

L = length to divide (ft) or watershed length y = average watershed slope (in percent)

S = potential abstraction (inches)

Scituate, MA

The potential abstraction is based on the weighted curve number of the watershed:

$$S = \frac{1000}{CN} - 10$$

The curve number for the watershed was calculated using NRCS TR-55, aerial maps, and the NRCS web soil survey (U.S. Department of Agriculture) to derive the following assumptions:

- Approximately 60% of the watershed is wooded. Half of these soils are Hydrologic Soil Group C, and half are Hydrologic Soil Group D.
- About 40% of the watershed consists of ½-ac residential neighborhoods. Twenty percent of these soils are Hydrologic Soil Group B and 80% are Hydrologic Soil Group C.

The length and slope of the watershed were estimated with topographic maps. The watershed area was assumed to be 4.4 square miles (DPW 2013).

Once the peak flow Q_p was obtained, this flow is computed to a unit peak discharge by dividing by the watershed area.

$$q_u = \frac{q_p}{A_m}$$

The unit peak discharge was then used as an input to the TR-55 equation for peak flow, or in this case, the probable maximum flood. This equation can be used for any rainfall amount, whereas the original peak flow (Q_p) is defined for 1 inch of rainfall.

$$PMF = q_u A_m QF_p$$
 where $q_u =$ unit peak discharge (cfs/sq mi/inch)
 $A_m =$ area of the watershed (sq mi)
 $Q =$ direct runoff (inches)
 $F_p =$ adjustment factor for pond and swamp areas

The direct runoff is calculated with the following equation:

$$Q = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 where P = probable maximum precipitation (inches)
S = potential abstraction (inches)

EA conservatively assumed that 1% of the watershed consists of ponded/swampy areas, which according to the TR-55 produces an adjustment factor F_p of 0.87.

Input parameters for the PMF calculation are presented in Table A-1.

Runoff	Watershed	Watershed slope, y (%)	Watershed Area,	Ponding Adjustment
CN	Length, L (ft)		A _m (sq. mi.)	Factor, F _n
77	17,200	0.29	4.4	0.87

Table A-1	Input Parameters	for	Probable N	Maximum	Flood A	nalvsis
-----------	-------------------------	-----	-------------------	---------	---------	---------

Results

Estimates of the PMF peak discharge for 6-hr, 12-hr, and 24-hr precipitation duration are summarized in Table A-2. The Spillway Design Flood (SDF) for Reservoir Dam is the ½ PMF flow which is also shown in Table A-2.

Table A-2 Probable Maximum Flood for 6-hr, 12-hr, and 24-hr Precipitation Even	Table A-2	Probable Maximum	Flood for 6-hr.	12-hr. and 2	4-hr Precipitation Event
--	-----------	-------------------------	-----------------	--------------	--------------------------

Storm Duration, D (hr)	Probable Maximum Rainfall, P (in)	PMF (cfs)	¹ / ₂ PMF (cfs)
6	23.5	4,042	2,021
12	25.9	3,405	1,703
24	28.2	2,524	1,262

Reservoir Dam would have approximately 0.5 ft of freeboard and would not be overtopped during a 6-hour ½ PMF SDF. Longer duration storms would have lower peak discharges and more freeboard.

References

Bedient, Philip B., Wayne C. Huber, and Baxter E. Vieux. 2013. Hydrology and Floodplain Analysis. Fifth Edition.

Natural Resource Conservation Service. 2013. Technical Release No. 55 (TR-55): Urban Hydrology for Small Watersheds.

Town of Scituate, Department of Public Works – Water Division (DPW). 2013. First Herring Brook Reservoir Dam, Phase I Inspection/Evaluation Report, April 10.

United States Department of the Interior. Bureau of Reclamation. 1973. Design of Small Dams: A Water Resources Technical Publication. Second Edition.

United States Department of Agriculture. 2013. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/. Accessed 3 May. UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF RECLAMATION

DESIGN OF SMALL DAMS

A Water Resources Technical Publication

Second Edition 1973 Revised Reprint 1977

DESIGN OF SMALL DAMS

be equal to the rainfall Therefore, the overall retention loss for rainfall on a partially snowcovered watershed during the melting season will be less than that for the same watershed when bare of snow.

It should be kept in mind that, although a usual sequence of events may produce floods, it is generally the unusual event or series of events that produce the great floods. The occurrence of two hurricane storms a few days apart following the same path over a large area in the northeastern States in August of 1955 is a prime example. Hasty conclusions as to flood potential should not be made on the basis of a long period of streamflow record. For example, although the recorded maximum peak discharge on the Pecos River near Comstock, Tex., was 116,000 second-feet for the period of years 1900 through 1953, a discharge of 948,000 second-feet occurred on June 28, 1954.

B. PROCEDURES

49. Introduction .- The selection of an appropriate inflow design flood is an essential part of the engineering studies for a project. The words "selection" and "appropriate" are used advisedly because a considerable amount of engineering judgment must be exercised in any hydrologic study of flood potential. It might be presumed that the problems of determining an inflow design flood would decrease in direct ratio to the size of the drainage areas involved and that such problems for drainage areas above small dams could be resolved quite easily. Such is not the case. In many instances, the hydrologic problems for small drainage areas are less easily resolved than those for large areas because relevant data for small natural watersheds are extremely meager.

It is believed that those using the material in this text most often will be concerned with projects for which little direct hydrologic data are available. Therefore, material and procedures presented herein have been selected with a view to assisting in solution of flood estimating problems for such projects. However, all available recorded streamflow and precipitation data should be utilized to the fullest extent possible, and outlines for methods of analyzing these data are included in this text. Discussions of procedural developments have been omitted or condensed, and discussions of applications of automatic data processing programs which have been developed for utilization in flood estimates are not included. The engineer so interested may obtain them from references cited in the bibliography, section 60. Discussions of the following subjects are presented: Subject: Section

Estimating storm potential	50
Estimating runoff from rainfall	51
Unitgraph principles	52
Hydrograph analysis	53
Unitgraph derivation for ungaged areas	54
Triangular hydrograph analysis	55
Estimating time of concentration	56
Application of triangular hydrographs	57
Estimating inflow design flood	58
Frequency curve computations	59

50. Estimating Storm Potential.-(a) General. —An estimate of storm potential is an integral part of the hydrometeorological approach to computation of inflow design floods. The term "storm potential" is all-inclusive, embracing factors such as rainfall intensity, duration and areal extent. Meteorologists are able to establish estimates of maximum values for these factors which, judged by present knowledge, appear to be the limit of nature's capabilities. These maximum values differ throughout the United States (and the world). Knowledge of such limits, and the resulting probable maximum precipitation, provides the hydrologist with a good starting point for his estimate of a maximum probable flood as well as for floods less than the maximum probable. The precipitation values adopted for computing the selected inflow design flood are usually referred to as design storm values.

(b) *Definitions*.—For the purposes of this text, the following terminology is used:

(1) Probable maximum precipitation.— Probable maximum precipitation values represent an envelopment of maximized intensity-

Flood Studies

duration values obtained from all types of storms. It is recognized that probable maximum precipitation values for all durations and for all areas will not occur from any one type of storm. For example, a maximized thunderstorm is very likely to provide probable maximum precipitation over an area of 50 square miles for a duration of 6 hours or less, but the controlling values for longer durations or for larger areas will almost invariably be obtained from general storms.

(2) Probable maximum storm.—The probable maximum storm values represent an envelopment of maximized intensity-duration values obtained from one type of storm only. Consideration is given to storm type and variations of precipitation with respect to location, areal coverage, and duration.

(c) Probable Maximum Storm Considerations.-Estimates of probable maximum storms are based on analyses which consist of three steps: (1) determining the areal and time distribution of the larger storms of record in the general area; (2) maximizing these observed storms by increasing their values to their physical upper limit as determined from a consideration of their observed moisture content in relation to the probable maximum moisture content that could be associated with a similar storm condition; and (3) considering transposition of these storms. The results of the first step will indicate which storms are best suited for further analysis and can also be used in the hydrograph analyses to estimate average retention loss rates and hydrograph lag times.

In the second step, the relation between maximum moisture potential and the moisture charge of the inflowing airmass is considered. Other factors that are effective in determining the efficiency of a storm in converting atmospheric moisture into precipitation have not been defined sufficiently at the present time to enable their use for making estimates of storm efficiency.

Storm transposition considered in the third step is based on the assumption that the location of a particular storm depended upon meteorological factors that could just as easily occur over other locations within given regions. Transposition, in the case of general-type storms, is limited to regions subject to similar types of storms and not separated by major orographic features. Thunderstorms are more widely transposed than general-type storms. Because the period of record for any particular drainage basin is generally quite short, the transposition of other storms within the same homogeneous meteorological and orographic area has the advantage of combining regional experience of a large number of storms.

(d) Generalized Precipitation Charts.-An engineer encountering a design flood estimating problem needs information regarding storm potential. Since such information pertains to magnitudes of storms which could occur from a more severe combination of meteorological events that has yet been observed, the engineer cannot make his estimate directly from recorded storm data. It is impossible to show all the refinements and variations that can influence the magnitude of design storm values for all individual locations within the United States on a generalized chart. However, broad areas do have like storm potential. Generalized charts have been prepared for this text to provide one means of rapidly determining design storm values for any specific area. The design storm values obtained from the generalized charts represent a reasonable upper limit and in most cases will exceed the values obtained for a specific watershed by a detailed hydrometeorological study. If such a study is desired because of the importance or size of the project, the services of a consulting hydrometeorologist should be secured.

(1) Generalized chart for the United States east of 105° meridian.—Figure 15 shows probable maximum 6-hour precipitation values for 10-square-mile areas of the United States east of the 105° meridian. This chart is based on one presented in Hydrometeorological Report No. 33, prepared by the Hydrometeorological Branch of the National Weather Service in collaboration with the U.S. Corps of Engineers (see bibliography, sec. 60). These 6-hour values for 10-square-mile areas can be modified for durations in excess of 6 hours and for larger areas up to 1,000 square miles by use of figure 16. No variation is assumed between point and 10-square-mile precipitation. For

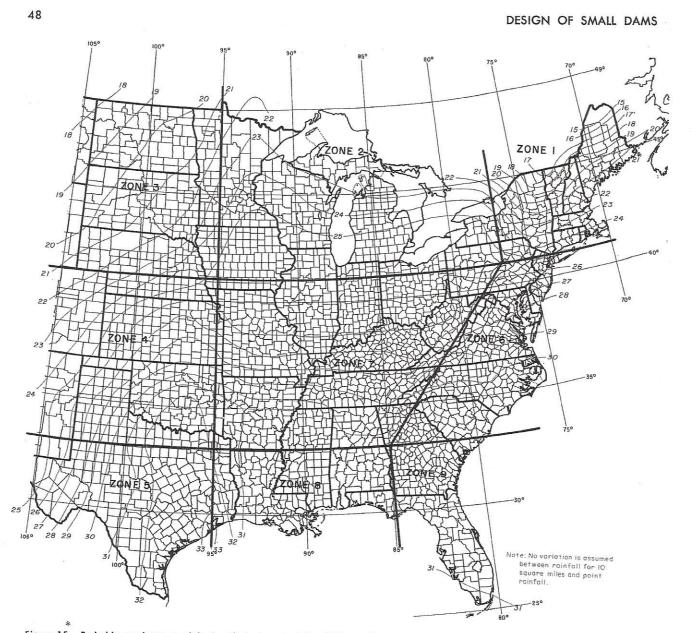


Figure 15. Probable maximum precipitation (inches) east of the 105° meridian for an area of 10 square miles and 6 hours' duration. 288-D-2449A, 288-D-2754, 288-D-2755.

durations shorter than 6 hours, the time distribution of precipitation can be obtained from curve C, figure 18. After the publication of Hydrometeorological Report No. 33, the Corps of Engineers recommended ¹² that the following reductions be applied to the report values

in order to provide for the imperfect "fit" of storm isohyetal patterns to the shape of a particular basin. 1111 1 19

IN CRUMBE

NUAIMARE ABER

DRAMARE AREA IN STUARF MULES

Drainage area (square miles)	Reduction factor applicable to H.R. 33 rainfall values (percent)
1,000	
500	
200	
100	
50	
10	20.0

¹⁹ Engineer Circular No. 1110-2-27, dated August 1, 1966, "Policies and Procedures Pertaining to Determination of Spillway Capacities and Freeboard Allowances for Dams."

^{*}The NWS (National Weather Service) periodically updates these maps. Therefore, it is suggested that the user utilize the latest map of the NWS.

Flood Studies

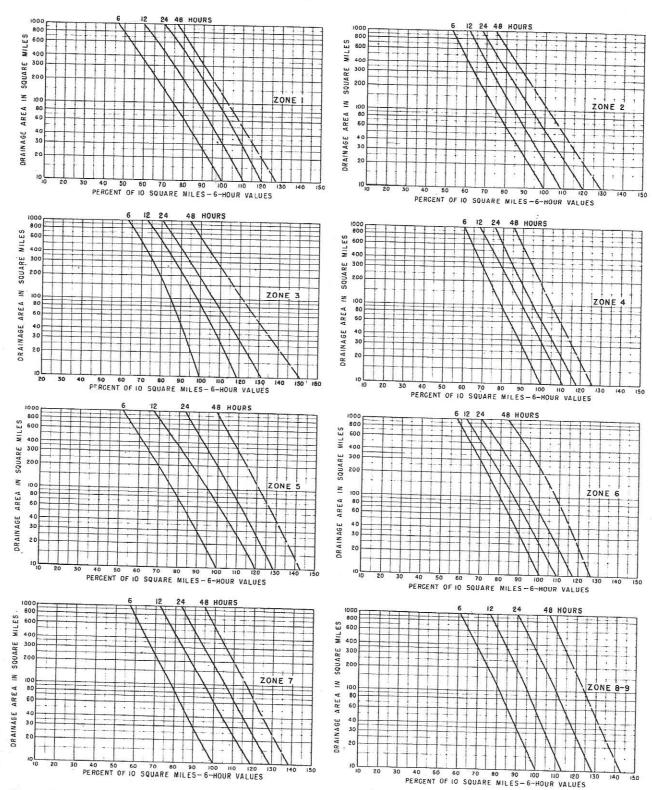


Figure 16. Depth-area-duration relationships. Percentage to be applied to 10 square miles, 6-hour probable maximum precipitation values. 288–D–2450.