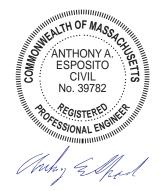
Drainage Calculations and Stormwater Management Plan

In Support of a

A Comprehensive Permit

For:

The Cottages at Old Oaken Bucket


279-281 Old Oaken Bucket Rd. Scituate, MA

Submitted to:

Town of Scituate Zoning Board of Appeals

Dated: December 12, 2022

Prepared By Anthony A. Esposito, P.E. South Shore Survey Consultants, Inc. 167R Summer Street Kingston, MA 02364

TABLE OF CONTENTS

- STORMWATER REPORT CHECKLIST
 - Stormwater Report Checklist
- PROJECT SUMMARY
- COMPLIANCE WITH STORMWATER MANAGEMENT STANDARDS
 - Standard 1 No New Untreated Discharges
 - Standard 2 Peak Discharge Rate Attenuation
 - Standard 3 Recharge to Groundwater
 - Standard 4 Water Quality TSS Removal
 - Standard 5 Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
 - Standard 6 Critical Areas
 - Standard 7 Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable
 - Standard 8 Construction Period Pollution Prevention and Erosion and Sedimentation Control
 - Standard 9 Operation and Maintenance Plan
 - Standard 10 Prohibition of Illicit Discharges

5. APPENDICES

- APPENDIX A: Hydrocad and Stormwater Calculations
- APPENDIX B: Illicit Discharge Compliance Statement
- APPENDIX C: Soil Evaluation Forms
- APPENDIX D: Construction Phase Pollution Prevention and Erosion and Sedimentation Plan

Post-Development BMP Operation and Maintenance Plan

• APPENDIX E: Pre and Post Development plans

Zoning Board of Appeals Town of Scituate 600 Chief Justice Cushing Highway Scituate, MA 02066

RE: Project Drainage Summary for The Cottages at Old Oaken Bucket A Comprehensive Permit 279-281 Old Oaken Bucket Rd. Scituate, MA

Members of the Board,

We hereby submit these drainage calculations to accompany the site plans to support the construction of the proposed 32-unit Comprehensive Permit at 279-281 Old Oaken Bucket Rd. Scituate, MA.

We have complied with DEP Stormwater Management requirements as detailed in the following...

Standard 1 – No New Untreated Discharges

The proposed improvements to the property are designed so that new stormwater conveyances do not discharge untreated pavement runoff into or cause erosion to wetlands.

Standard 2 – Peak Rate Attenuation

The drainage study was completed using the SCS TR-20 computer program (HydroCAD) with the use of the Rainfall Depths of the Cornell method. The depths were provided for the 2, 10 and 100 year storms as required by MassDEP

The rainfall depths of the Cornell Method Rainfall Intensity Atlas were provided by the Northeast Regional Climate Center's Extreme Precipitation Estimates.

There is one Pre-Development watershed. The watershed on the east side of the site discharges west to Bordering Vegetated Wetland. This watershed is the Predevelopment watershed considered in the calculations.

The Post-Development watershed plan details the proposed grading and construction of the development and drainage systems. It shows that drainage mitigation of peak runoff for the aforementioned storms will be provided by infiltration chambers.

Routing each of the storms through the Hydrocad model shows the following results...

storm	Exist. (CFS)	Prop. runoff
		(CFS
2-yr, 3.36 inches	7.58	7.17
10-yr, 4.98 inches	17.04	16.25
25-yr, 6.24 inches	25.20	23.44
100-yr, 8.80 inches	42.74	39.46

Pre-Development vs. Post-Development to wetlands

The results above show that the proposed runoff discharging off-site will not exceed the discharge under existing conditions. Mounding and drawdown calculations are also included.

Standard 3 – Groundwater Recharge

Runoff from impervious areas will be infiltrated by the use of infiltration chambers and rain gardens, which will meet the Stormwater Guidelines to include:

- Utilize the "Simple Dynamic method for sizing the storage volume, which takes into account the fact that stormwater is exfiltrating from the infiltration basin at the same time that the basin is filling.
- Hydraulic conductivity are based on soil survey information and values developed from Rawls, Brakensiek and Saxton, 1982, Estimation of Soil Water Properties, *Transactions of the American Society of Agricultural Engineers*, vol. 25, no.5. The Rawls rate for A soils were used to determine the required infiltration volumes. The Rawls rate for B soils were used to determine the provided infiltration volumes.
- Refer to the detail sheets for soil testing results.

Standard 4 – Water Quality

The proposed stormwater management system includes deep sump catch basins, proprietary separators, infiltration chambers to collect runoff. Stormwater runoff from the cul-de-sac is routed to a Oil & Water Separator and then to a rain garden.

Removal rates for all paved surfaces are:

Deep sump catch basins	25%	
Proprietary Treatment units		80%

The proposed infiltration beds for the roof runoff do not require further water treatment.

The Standard is met.

Standard 5 – Land Uses with Higher Potential Pollutant Loads (LUHPPLs)

The proposed project is not in a land use with higher potential pollutant loads. The standard is met

Standard 6 - Critical Areas

The proposed project is partially located within a critical area. A Zone 2 Aquifer Protection District

<u>Standard 7 – Redevelopments and Other Projects Subject to the Standards only</u> to the maximum extent practicable

The proposed project is not a Redevelopment project. Not applicable.

<u>Standard 8 – Construction Period Pollution Prevention and Erosion and</u> <u>Sedimentation Control</u>

Filtermitt will be used for erosion control devices in place of haybales and siltation fence and will be placed at the down-gradient limit of work prior to the commencement of any construction activity. The integrity of the wattles will be maintained by periodic inspection and replacement as necessary. The wattles will remain in place for the duration of the project. Refer to the plans for the locations of the erosion and sedimentation controls as well as the construction details.

Also, a Construction Phase Pollution Prevention and Erosion and Sedimentation Plan has been developed for the project and is attached to this report, see the Appendices. The Standard is met.

Standard 9 – Operation and Maintenance Plan

The Long-Term Pollution Prevention Plan has been incorporated into the Post-Development Operation and Maintenance Plan. Refer to Appendices for BMP Operation and Maintenance Plans.

The Standard is met.

Standard 10 – Prohibition of Illicit Discharges

No illicit discharges have been observed on site. Furthermore, measures to prevent illicit discharges are included in the Long-Term Pollution Prevention Plan. Therefore, provisions have been made to prevent illicit discharges.

The Standard is met.

If you have any questions, please contact us.

Very Truly Yours, Anthony Esposito

Anthony A. Esposito, P.E. South Shore Survey Consultants Inc. 167R Summer St. Kingston, MA 02364

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

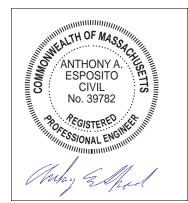
¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

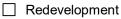

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature


Anthony Esposito

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\boxtimes	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- \boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
- Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

- Soil Analysis provided.
- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Static	🗌 Simple Dynamic
---------------	------------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Pr	operty includes a l	M.G.L. c. 21E site or	a solid waste landfill	and a mounding ana	alysis is included.
----	---------------------	-----------------------	------------------------	--------------------	---------------------

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

Checklist (continu

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The ¹/₂" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- ☐ The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project	t
-----------------	---

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

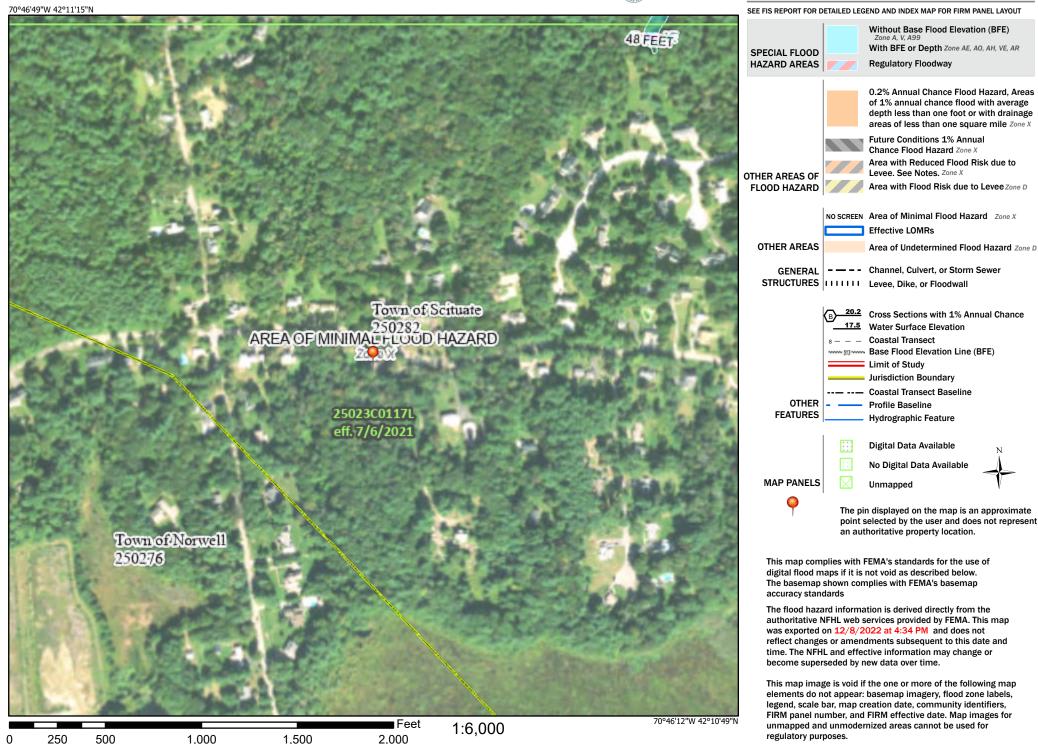
A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

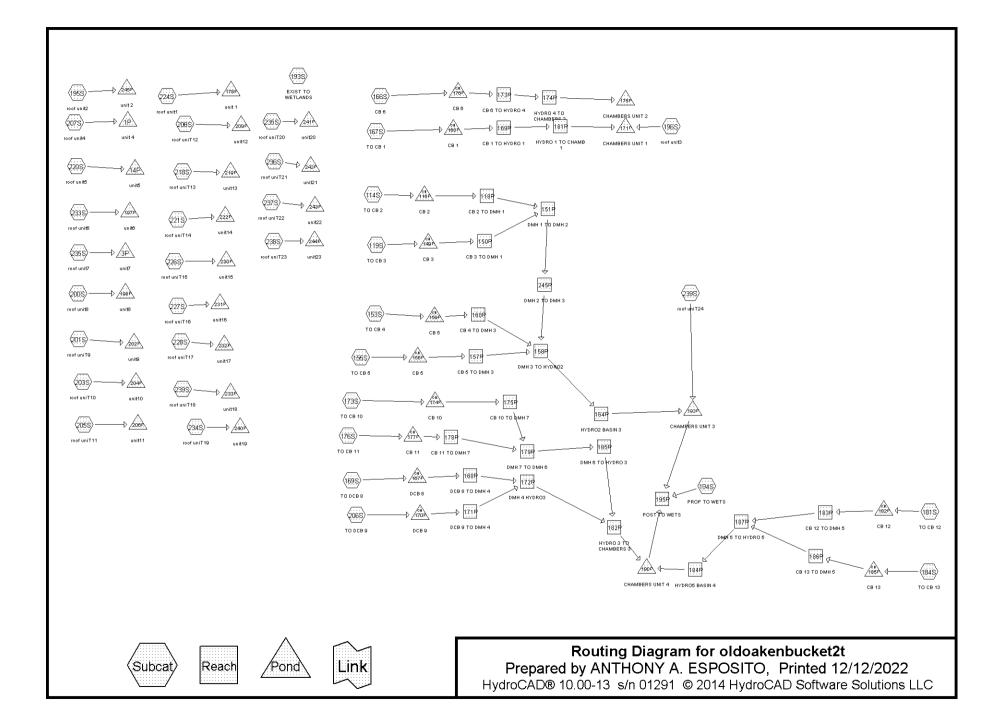
- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.


Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.


National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Summary for Subcatchment 114S: TO CB 2

Runoff = 0.46 cfs @ 12.09 hrs, Volume= 0.033 af, Depth= 2.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

	A	rea (sf)	CN	Description	n				
*		4,511	98	IMPERVIO	US				
		3,863	74	>75% Gra	ss cover, G	ood, HSG C			
		8,374	87	Weighted	Weighted Average				
		3,863		46.13% Pe	ervious Area	a			
		4,511		53.87% Impervious Area					
	Тс	Length	Slop	e Velocity	Capacity	Description			
1)	min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	6.0					Direct Entry, tr55 min.			

Summary for Subcatchment 119S: TO CB 3

Runoff	=	0.28 cfs @	12.09 hrs,	Volume=	0.020 af, Depth= 2.41"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

	Area (sf)	CN	Description	n				
*	3,172	98	IMPERVIO	US				
	1,200	74	>75% Gras	>75% Grass cover, Good, HSG C				
	4,372	91	Weighted Average					
	1,200		27.45% Pervious Area					
	3,172		72.55% Impervious Area					
	Tc Length	Slop	e Velocity	Capacity	Description			
(m	nin) (feet)	(ft/f		(cfs)	Decemption			
	6.0	•	· · · ·	\$ 6	Direct Entry, TR-55 MIN.			

Summary for Subcatchment 153S: TO CB 4

Runoff = 0.44 cfs @ 12.18 hrs, Volume= 0.040 af, Depth= 2.06"

	Area (sf)	CN	Description					
*	5,335	98	IMPERVIOUS					
	4,754	74	>75% Grass cover, Good, HSG C					
	10,089	87	Weighted Average					
	4,754		47.12% Pervious Area					
	5,335		52.88% Impervious Area					

oldoakenbucket2t

Type III 24-hr cornell 002 Rainfall=3.36" Printed 12/12/2022

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Page	2
I ayu	<u> </u>

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	12.0	50	0.0800	0.07		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	1.1	188	0.0320	2.88		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	0.0	7	0.0200	2.87		Shallow Concentrated Flow, CD
						Paved Kv= 20.3 fps
	0.2	47	0.0300	3.52		Shallow Concentrated Flow, DE
_						Paved Kv= 20.3 fps
	13.3	292	Total			

Summary for Subcatchment 155S: TO CB 5

Runoff	=	0.28 cfs @	12.09 hrs, Volume=	0.021 af, Depth= 2.41"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

	Area (sf)	CN	Description	า			
*	3,072	98	IMPERVIO	US			
	1,382	74	>75% Gras	>75% Grass cover, Good, HSG C			
	4,454	91	Weighted <i>i</i>	Weighted Average			
	1,382		31.03% Pervious Area				
	3,072		68.97% lm	pervious A	геа		
(n	Tc Length nin) (feet)	•	,	Capacity (cfs)	Description		
	6.0				Direct Entry, tr-55 min		

Summary for Subcatchment 166S: CB 6

Runoff = 0.75 cfs @ 12.09 hrs, Volume= 0.054 af, Depth= 1.82"

	Area (sf)	CN	Description	า	
	8,834	74	>75% Gras	ss cover, G	Good, HSG C
*	6,602	98	PAVEMEN	T, HSG C	
	15,436	84	Weighted /	Average	
	8,834		57.23% Pe	rvious Area	a
	6,602		42.77% lm	pervious A	rea
		~		.	
	Tc Length	Slop	,		Description
(n	nin) (feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0				Direct Entry, tr-55 min
	6. 0				Direct Entry, tr-55 min

Summary for Subcatchment 167S: TO CB 1

Runoff = 0.19 cfs @ 12.09 hrs, Volume= 0.014 af, Depth= 2.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

_	А	rea (sf)	CN	Description	า					
*		2,341	98	IMPERVIO	US					
		562	74	>75% Gras	>75% Grass cover, Good, HSG C					
_		2,903	93	Weighted /	Veighted Average					
		562		19.36% Pe	19.36% Pervious Area					
		2,341		80.64% Im	pervious A	rea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.1	50	0.0600	0.16		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.37"				
	0.1	22	0.0600	3.94		Shallow Concentrated Flow, BC				
						Unpaved Kv= 16.1 fps				
	1.1	185	0.0200	2.87		Shallow Concentrated Flow, CD				
_						Paved Kv= 20.3 fps				
	6.3	257	Total							

Summary for Subcatchment 169S: TO DCB 8

Runoff	=	3.20 cfs @	12.39 hrs,	Volume=	0.394 af, Depth= 1.20"
			,	· · · · · · · · · · · · · · · · · · ·	

	Area (sf)	CN	Description
*	16,852	98	pavement
*	2,343	98	EXIST HSE
	97,544	74	>75% Grass cover, Good, HSG C
	54,320	70	Woods, Good, HSG C
*	183	98	WALL
	171,242	75	Weighted Average
	151,864		88.68% Pervious Area
	19,378		11.32% Impervious Area

oldoakenbucket2t

Prepared by ANTHONY A. ESPOSITO

Type III 24-hr cornell 002 Rainfall=3.36" Printed 12/12/2022 HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC Page 4

Slope Velocity Capacity Description Tc Length (feet) (ft/ft) (min) (ft/sec) (cfs) 50 0.0200 20.9 0.04 Sheet Flow, AB Woods: Dense underbrush n= 0.800 P2= 3.37" 1.7 298 0.0330 2.92 Shallow Concentrated Flow, BC Unpaved Kv= 16.1 fps Shallow Concentrated Flow, CD 0.7 136 0.0440 3.38 Unpaved Kv= 16.1 fps **Shallow Concentrated Flow, DE** 0.2 48 0.0437 4.24 Paved Kv= 20.3 fps 0.0 7 0.0200 2.87 Shallow Concentrated Flow, EF Paved Kv= 20.3 fps 2.6 550 0.0300 3.52 Shallow Concentrated Flow, FG Paved Kv= 20.3 fps

26.1 1,089 Total

Summary for Subcatchment 173S: TO CB 10

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

	Ar	ea (sf)	CN	Description	n		
*		3,534	98	IMPERVIO	US		
		3,452	74	>75% Gras	ss cover, G	Bood, HSG C	
		6,986	86	Weighted Average			
		3,452		49.41% Pe	ervious Area	а	
		3,534		50.59% Impervious Area			
	Тс	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	6.0					Direct Entry, TR55 MIN	
	Summary for Subcatchment 176S: TO CB 11						

Runoff = 0.12 cfs @ 12.08 hrs, Volume= 0.010 af, Depth= 3.13"

_	A	rea (sf)	CN	Description	n	
*		1,635	98	IMPERVIO	US	
		1,635		100.00% lr	mpervious <i>i</i>	Area
	Тс	Length	Slope	• Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	6.0					Direct Entry, tr-55 min

Summary for Subcatchment 181S: TO CB 12

Runoff = 0.62 cfs @ 12.09 hrs, Volume= 0.045 af, Depth= 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

	Area (sf)	CN	Description	n		
*	6,607	98	IMPERVIO	US		
	3,879	74	>75% Grass cover, Good, HSG C			
	10,486	89	Weighted Average			
	3,879		36.99% Pervious Area			
	6,607		63.01% Impervious Area			
,	Tc Length	Slop			Description	
(n	nin) (feet)	(ft/fl	t) (ft/sec)	(cfs)		
	6.0				Direct Entry, TR 55 MIN	
			-			

Summary for Subcatchment 184S: TO CB 13

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 0.020 af, Depth= 2.32	Runoff	= 0.28 cfs @	12.09 hrs, Volume=	0.020 af, Depth= 2.32"
--	--------	--------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

	Area (s	f) CN	Descriptior	า	
*	3,08	2 98	IMPERVIO	US	
	1,49	7 74	>75% Gras	ss cover, G	Good, HSG C
	4,57	9 90	Weighted /	Average	
	1,49	7	32.69% Pe	ervious Area	a
	3,08	2	67.31% lm	pervious A	Area
	Tc Leng (min) (fee			Capacity (cfs)	
	6.0				Direct Entry, TR 55 MIN
		Su	mmary for	Subcatc	hment 193S: EXIST TO WETLANDS

Runoff = 7.58 cfs @ 12.31 hrs, Volume= 0.867 af, Depth= 1.03"

oldoakenbucket2t

 Type III 24-hr
 cornell 002 Rainfall=3.36"

 Printed
 12/12/2022

 LC
 Page 6

Prepared by ANTHONY A.	ESPOSITO
HydroCAD® 10.00-13 s/n 01291	© 2014 HydroCAD Software Solutions LLC

	А	rea (sf)	CN	Description	n	
	3	21,168	70	Woods, Go	ood, HSG C	2
*		8,364	98	ROOF, HS	GC	
*		436	98	CONCRET	FE, HSG C	
		9,975	96	Gravel sur	face, HSG	С
		44,126	74	>75% Gras	ss cover, G	iood, HSG C
*		10,759	98	PAVEMEN	IT, HSG C	
_		44,910	65	Brush, Goo	od, HSG C	
	4	39,738	72	Weighted /	Average	
	4	20,179		95.55% Pe	ervious Area	a
		19,559		4.45% Imp	ervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.8	50	0.0300	0.05		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	2.5	524	0.0458	3.45		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	20.3	574	Total			

Summary for Subcatchment 194S: PROP TO WETS

Runoff = 4.14 cfs @ 12.17 hrs, Volume=

0.373 af, Depth= 1.09"

	Area (sf)	CN	Descriptio	n				
	62,378	70 Woods, Good, HSG C						
	111,644	74	>75% Gras	ss cover, C	Good, HSG C			
*	1,394	98	WALLS, H	SG C				
	479	96	Gravel sur	face, HSG	В			
*	3,703	98	PAVEMEN	T				
	179,598	73	Weighted /	Average				
	174,501		97.16% Pe	ervious Are	а			
	5,097		2.84% Imp	ervious Ar	ea			
Тс	0	Slope			Description			
<u>(min</u>	/ /	(ft/ft)		(cfs)				
8.0) 50	0.0200	0.10		Sheet Flow, AB			
					Grass: Dense n= 0.240 P2= 3.37"			
0.5	5 68	0.0200	2.28		Shallow Concentrated Flow, BC			
					Unpaved Kv= 16.1 fps			
0.1	1 24	0.0200	2.87		Shallow Concentrated Flow, CD			
					Paved Kv= 20.3 fps			
2.6	532	0.0450	3.42		Shallow Concentrated Flow, DE			
					Unpaved Kv= 16.1 fps			
11.2	2 674	Total						

Summary for Subcatchment 195S: roof unit2

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Ar	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lr	mpervious.	Area
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

Summary for Subcatchment 196S: roof unit3

Runoff	=	0.15 cfs @	12.08 hrs, Volum	ne=	0.012 af, Depth= 3.13"	
--------	---	------------	------------------	-----	------------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Area	(sf)	CN	Descriptio	า				
1,	,992	98	Roofs, HS	G A				
1,	,992	100.00% Impervious Area						
	ength (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry, tr-55 min			
	Summary for Subcatchment 200S: roof unit8							

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Area (sf)	CN	Descriptio	n				
1,992	98	98 Roofs, HSG A					
1,992		100.00% lr	mpervious /	Area			
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description			
6.0				Direct Entry, tr-55 min			

Summary for Subcatchment 201S: roof uniT9

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

A	rea (sf)	CN	Description	n			
	1,992	98	Roofs, HS	G A			
	1,992		100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry, tr-55 min		

Summary for Subcatchment 203S: roof uniT10

Runoff	=	0.15 cfs @	12.08 hrs, \	Volume=	0.012 af, Depth= 3.13"
--------	---	------------	--------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Area (s	sf) C	CN E	Descriptior	า					
1,99	92 9	98 F	Roofs, HS	GΑ					
1,99	92	100.00% Impervious Area							
Tc Leng (min) (feo		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, tr-55 min				
	Summary for Subcatchment 205S: roof uniT11								

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Area (sf)	CN	Descriptio	n				
1,992	98	98 Roofs, HSG A					
1,992		100.00% lr	mpervious /	Area			
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description			
6.0				Direct Entry, tr-55 min			

Summary for Subcatchment 206S: TO DCB 9

Runoff = 0.98 cfs @ 12.14 hrs, Volume= 0.080 af, Depth= 2.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

	Area (sf)	CN	Descriptio	า	
*	11,762	98	pavement		
	7,805	74	>75% Gras	ss cover, G	Bood, HSG C
	19,567	88	Weighted /	Average	
	7,805		39.8 <mark>9</mark> % Pe	ervious Area	a
	11,762	(60.11% lm	pervious A	rea
Т	c Length	Slope	Velocity	Capacity	Description
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)	
8.0	D 50	0.0200	0.10		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.37"
0.1	1 11	0.0200	2.28		Shallow Concentrated Flow, BC
					Unpaved Kv= 16.1 fps
0.0	D 7	0.0200	2.87		Shallow Concentrated Flow, CD
					Paved Kv= 20.3 fps
1.0	5 333	0.0300	3.52		Shallow Concentrated Flow, DE
					Paved Kv= 20.3 fps
9.	7 401	Total			

Summary for Subcatchment 207S: roof unit4

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Area (sf) CN	Description	า	
1,992	2 98	Roofs, HS	GΑ	
1,993	2	100.00% Ir	npervious <i>i</i>	Area
Tc Leng (min) (fee			Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

Summary for Subcatchment 208S: roof uniT12

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Type III 24-hr	cornell 002 Rainfall=3.36"

Printed 12/12/2022

Page 10

Prepared by ANTHONY A. ESPOSITO

oldoakenbucket2t

HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Area (sf) CN Description									
1,992 98 Roofs, HSG A									
1,992 100.00% Impervious Area									
·,									
Tc Length Slope Velocity Capacity Description									
(min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry, tr-55 min									
Summary for Subcatchment 218S: roof uniT13									
Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 002 Rainfall=3.36"									
Area (sf) CN Description									
1,992 98 Roofs, HSG A									
1,992 100.00% Impervious Area									
Tc Length Slope Velocity Capacity Description									
(min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry, tr-55 min									
Summary for Subcatchment 220S: roof unit5									
Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 002 Rainfall=3.36"									
Area (sf) CN Description									
1,992 98 Roofs, HSG A									
1,992 100.00% Impervious Area									
Tc Length Slope Velocity Capacity Description									
(min) (feet) (ft/sec) (cfs) 6.0 Direct Entry, tr-55 min									
o.o									
Summary for Subcatchment 221S: roof uniT14									
Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 002 Rainfall=3.36"									

Area (st) CN	Description
1,99	2 98	Roofs, HSG A
1,99	2	100.00% Impervious Area

oldoakenbucket2t Type III 24-hr cornell 002 Rainfall=3.36"								
Prepared by ANTHONY A. ESPOSITOPrinted 12/12/2022HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLCPage 11								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
6.0 Direct Entry, tr-55 min								
Summary for Subcatchment 223S: roof unit6								
Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 002 Rainfall=3.36"								
Area (sf) CN Description								
1,992 98 Roofs, HSG A								
1,992 100.00% Impervious Area								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
6.0 Direct Entry, tr-55 min								
Summary for Subcatchment 224S: roof unit1								
Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 002 Rainfall=3.36"								
Area (sf) CN Description								
1,992 98 Roofs, HSG A								
1,992 100.00% Impervious Area								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
6.0 Direct Entry, tr-55 min								
Summary for Subcatchment 225S: roof unit7								
Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 002 Rainfall=3.36"								
Area (sf) CN Description								
1,992 98 Roofs, HSG A								
1,992 100.00% Impervious Area								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
6.0 Direct Entry, tr-55 min								

Summary for Subcatchment 226S: roof uniT15

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

A	rea (sf)	CN	Descriptio	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% li	mpervious .	Area
Tc _(min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

Summary for Subcatchment 227S: roof uniT16

Runoff	=	0.15 cfs @	12.08 hrs, 1	Volume=	0.012 af, Depth= 3.13"
--------	---	------------	--------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Area	(sf)	CN	Descriptio	า						
1,	992	98 Roofs, HSG A								
1,	1,992 100.00% Impervious Area									
	ength (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
6.0	6.0 Direct Entry, tr-55 min									
	Summary for Subcatchment 228S: roof uniT17									

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Area (sf)	CN	Descriptio	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% Ir	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/l		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

Summary for Subcatchment 229S: roof uniT18

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lr	npervious.	Area
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

Summary for Subcatchment 234S: roof uniT19

Runoff	=	0.15 cfs @	12.08 hrs, '	Volume=	0.012 af, Depth= 3.13"
--------	---	------------	--------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Ar	rea (sf)	CN	Description	า	
	1,992	98	Roofs, HS	GΑ	
	1,992	100.00% Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min
	Summary for Subcatchment 235S: roof uniT20				

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Area (sf)	CN	Descriptio	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% Ir	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/l		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

Summary for Subcatchment 236S: roof uniT21

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lı	mpervious.	Area
Tc _(min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

Summary for Subcatchment 237S: roof uniT22

Runoff	=	0.15 cfs @	12.08 hrs, 1	Volume=	0.012 af, Depth= 3.13"
--------	---	------------	--------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Area (sf)	CN	Description	า			
1,992	98	Roofs, HS	G A			
1,992		100.00% Impervious Area				
Tc Length (min) (feet)		,	Capacity (cfs)	Description		
6.0				Direct Entry, tr-55 min		
	Summary for Subcatchment 238S: roof uniT23					

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

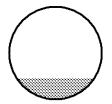
Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	GA	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

Summary for Subcatchment 239S: roof uniT24

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 3.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 002 Rainfall=3.36"

Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% Ir	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/fl		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

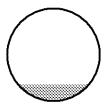

Summary for Reach 118R: CB 2 TO DMH 1

Inflow Area =	0.192 ac, 53.87% Imper	vious, Inflow Depth = 2.0	6" for cornell 002 event
Inflow =	0.46 cfs @ 12.09 hrs, V	/olume= 0.033 af	
Outflow =	0.46 cfs @ 12.09 hrs, V	/olume= 0.033 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.31 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'

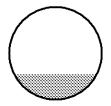

Summary for Reach 150R: CB 3 TO DMH 1

Inflow Area =	0.100 ac, 72.55% Impervious, Inflow I	Depth = 2.41"	for cornell 002 event
Inflow =	0.28 cfs @ 12.09 hrs, Volume=	0.020 af	
Outflow =	0.28 cfs @ 12.09 hrs, Volume=	0.020 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.85 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.95 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'

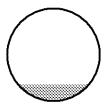

Summary for Reach 151R: DMH 1 TO DMH 2

Inflow Area =	0.293 ac, 60.28% Impervious, Inflow D	Depth = 2.18" for cornell 002 event
Inflow =	0.73 cfs @ 12.09 hrs, Volume=	0.053 af
Outflow =	0.73 cfs @ 12.10 hrs, Volume=	0.053 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.11 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 1.7 min

Peak Storage= 24 cf @ 12.10 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.37 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 138.0' Slope= 0.0151 '/' Inlet Invert= 95.68', Outlet Invert= 93.60'

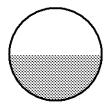

Summary for Reach 157R: CB 5 TO DMH 3

Inflow Area =	0.102 ac, 68.97% Impervious, Inflow	Depth = 2.41"	for cornell 002 event
Inflow =	0.28 cfs @ 12.09 hrs, Volume=	0.021 af	
Outflow =	0.28 cfs @ 12.09 hrs, Volume=	0.021 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.94 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'

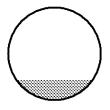

Summary for Reach 158R: DMH 3 TO HYDRO2

Inflow Area =	0.626 ac, 58.96% Impervious, Inflow I	Depth = 2.17" for cornell 002 event
Inflow =	1.36 cfs @ 12.11 hrs, Volume=	0.113 af
Outflow =	1.36 cfs @ 12.11 hrs, Volume=	0.113 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.54 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 0.5 min

Peak Storage= 15 cf @ 12.11 hrs Average Depth at Peak Storage= 0.49' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.79 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 39.0' Slope= 0.0062 '/' Inlet Invert= 90.39', Outlet Invert= 90.15'

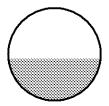

Summary for Reach 160R: CB 4 TO DMH 3

Inflow Are	a =	0.232 ac, 5	2.88% Impe	rvious,	Inflow Depth	n = 2.06"	for cornell 002 event
Inflow	=	0.44 cfs @	12.18 hrs, \	Volume	= 0.0	040 af	
Outflow	=	0.44 cfs @	12.18 hrs, \	Volume	= 0.0	040 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.35 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.18 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'

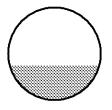

Summary for Reach 164R: HYDRO2 BASIN 3

Inflow Area =	0.626 ac, 5	58.96% Imp	ervious,	Inflow Dep	pth =	2.17"	for cor	nell 002 event
Inflow =	1.36 cfs @	12.11 hrs,	Volume)= (0.113 a	af		
Outflow =	1.36 cfs @	12.12 hrs,	Volume)= (0.113 a	af, Atte	ə n= 0 %,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.96 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.45' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.25 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 6.0' Slope= 0.0083 '/' Inlet Invert= 90.05', Outlet Invert= 90.00'

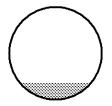

Summary for Reach 168R: DCB 8 TO DMH 4

Inflow Area =	3.931 ac, 11.32% Impervious, Inflow D	Depth = 1.20" for cornell 002 event
Inflow =	3.20 cfs @ 12.39 hrs, Volume=	0.394 af
Outflow =	3.20 cfs @ 12.39 hrs, Volume=	0.394 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.39 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.32 fps, Avg. Travel Time= 0.1 min

Peak Storage= 7 cf @ 12.39 hrs Average Depth at Peak Storage= 0.56' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.97 cfs

18.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0109 '/' Inlet Invert= 79.77', Outlet Invert= 79.65'

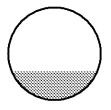

Summary for Reach 169R: CB 1 TO HYDRO 1

Inflow Area =	0.067 ac, 80.64% Impervious,	Inflow Depth = 2.60" for cornell 002 event
Inflow =	0.19 cfs @ 12.09 hrs, Volume	e= 0.014 af
Outflow =	0.19 cfs @ 12.09 hrs, Volume	e= 0.014 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 1.89 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 0.6 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 24.0' Slope= 0.0050 '/' Inlet Invert= 102.27', Outlet Invert= 102.15'

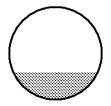

Summary for Reach 171R: DCB 9 TO DMH 4

Inflow Area =	0.449 ac, 60.11% Impervious, Inflov	v Depth = 2.14"	for cornell 002 event
Inflow =	0.98 cfs @ 12.14 hrs, Volume=	0.080 af	
Outflow =	0.98 cfs @ 12.14 hrs, Volume=	0.080 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.69 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.14 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.66 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 7.0' Slope= 0.0171 '/' Inlet Invert= 80.27', Outlet Invert= 80.15'

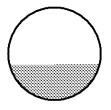

Summary for Reach 172R: DMH 4 HYDRO3

Inflow Area =	4.380 ac, 16.32% Impervious, Inflow D	Depth = 1.30" for cornell 002 event
Inflow =	3.67 cfs @ 12.36 hrs, Volume=	0.474 af
Outflow =	3.67 cfs @ 12.37 hrs, Volume=	0.474 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.66 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.79 fps, Avg. Travel Time= 0.5 min

Peak Storage= 39 cf @ 12.37 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 18.93 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 50.0' Slope= 0.0070 '/' Inlet Invert= 79.05', Outlet Invert= 78.70'

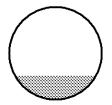

Summary for Reach 173R: CB 6 TO HYDRO 4

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow D	Depth = 1.82" for cornell 002 event
Inflow =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af
Outflow =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.67 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.96 fps, Avg. Travel Time= 0.8 min

Peak Storage= 13 cf @ 12.09 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.38 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 45.0' Slope= 0.0044 '/' Inlet Invert= 97.50', Outlet Invert= 97.30'

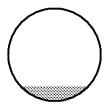

Summary for Reach 174R: HYDRO 4 TO CHAMBERS 2

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow D	Depth = 1.82" for cornell 002 event
Inflow =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af
Outflow =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.58 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.63 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 97.30', Outlet Invert= 97.20'


Summary for Reach 175R: CB 10 TO DMH 7

Inflow Area =	0.160 ac, 50.59% Impervious, Inflow D	epth = 1.97" for cornell 002 event
Inflow =	0.37 cfs @ 12.09 hrs, Volume=	0.026 af
Outflow =	0.37 cfs @ 12.09 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.38 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.53 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'

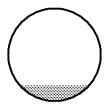
Summary for Reach 178R: CB 11 TO DMH 7

Inflow Area	=	0.038 ac,10	0.00% Imp	ervious,	Inflow De	pth =	3.13"	for co	rnell 002 event
Inflow :	=	0.12 cfs @	12.08 hrs,	Volume	;=	0.010	af		
Outflow =	=	0.12 cfs @	12.09 hrs,	Volume	; =	0.010	af, Atte	ə n= 0 %,	Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.15 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'

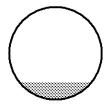

Summary for Reach 179R: DMH 7 TO DMH 6

Inflow Are	a =	0.198 ac, 59.96% Impervious, Inflow Depth = 2.19" for corr	nell 002 event
Inflow	=	0.49 cfs @ 12.09 hrs, Volume= 0.036 af	
Outflow	=	0.49 cfs @ 12.09 hrs, Volume= 0.036 af, Atten= 0%,	Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.18 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.59 fps, Avg. Travel Time= 1.0 min

Peak Storage= 9 cf @ 12.09 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 93.0' Slope= 0.0400 '/' Inlet Invert= 84.25', Outlet Invert= 80.53'

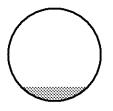

Summary for Reach 181R: HYDRO 1 TO CHAMB 1

Inflow Area =	0.067 ac, 80.64% Impervious, Inflow D	Depth = 2.60" for cornell 002 event
Inflow =	0.19 cfs @ 12.09 hrs, Volume=	0.014 af
Outflow =	0.19 cfs @ 12.09 hrs, Volume=	0.014 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 1.82 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.60 fps, Avg. Travel Time= 0.3 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.40 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0045 '/' Inlet Invert= 102.05', Outlet Invert= 102.00'

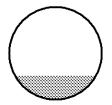

Summary for Reach 182R: HYDRO 3 TO CHAMBERS 3

Inflow Area =	4.578 ac, 18.21% Impervious, Inflow I	Depth = 1.34" for cornell 002 event
Inflow =	3.85 cfs @ 12.36 hrs, Volume=	0.511 af
Outflow =	3.85 cfs @ 12.36 hrs, Volume=	0.511 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 11.69 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.04 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.36 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 67.87 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0900 '/' Inlet Invert= 78.95', Outlet Invert= 78.50'

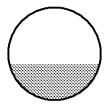

Summary for Reach 183R: CB 12 TO DMH 5

Inflow Area	=	0.241 ac, 6	63.01% Imp	ervious,	Inflow Dep	oth = 2	2.23"	for cor	nell 002 event
Inflow	=	0.62 cfs @	12.09 hrs,	Volume)= (0.045 a	f		
Outflow :	=	0.62 cfs @	12.09 hrs,	Volume	e= (0.045 a	f, Atte	en= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.76 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.28 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.11 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 12.0' Slope= 0.0133 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'

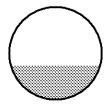

Summary for Reach 184R: HYDRO5 BASIN 4

Inflow Are	a =	0.346 ac, 64.31% Impervious, Inflow Depth = 2.26" for cornell 002 eve	ent
Inflow	=	0.90 cfs @ 12.09 hrs, Volume= 0.065 af	
Outflow	=	0.90 cfs $\bar{@}$ 12.09 hrs, Volume= 0.065 af, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.76 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0060 '/' Inlet Invert= 78.53', Outlet Invert= 78.50'

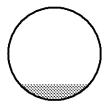

Summary for Reach 185R: DMH 6 TO HYDRO 3

Inflow Area =	0.198 ac, 59.96% Impervious, Inflow D	epth = 2.19" for cornell 002 event
Inflow =	0.49 cfs @ 12.09 hrs, Volume=	0.036 af
Outflow =	0.49 cfs @ 12.10 hrs, Volume=	0.036 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 1.84 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 1.1 min

Peak Storage= 9 cf @ 12.10 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.68 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 36.0' Slope= 0.0022 '/' Inlet Invert= 79.33', Outlet Invert= 79.25'

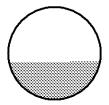

Summary for Reach 186R: CB 13 TO DMH 5

Inflow Area =	0.105 ac, 67.31% Impervious, Inflow I	Depth = 2.32"	for cornell 002 event
Inflow =	0.28 cfs @ 12.09 hrs, Volume=	0.020 af	
Outflow =	0.28 cfs @ 12.09 hrs, Volume=	0.020 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.08 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.30 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0145 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'


Summary for Reach 187R: DMH 5 TO HYDRO 5

Inflow Area =	0.346 ac, 64.31% Impervious, Inflow D	Depth = 2.26" for cornell 002 event
Inflow =	0.90 cfs @ 12.09 hrs, Volume=	0.065 af
Outflow =	0.90 cfs @ 12.09 hrs, Volume=	0.065 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.93 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.00 fps, Avg. Travel Time= 0.5 min

Peak Storage= 10 cf @ 12.09 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 32.0' Slope= 0.0050 '/' Inlet Invert= 78.79', Outlet Invert= 78.63'

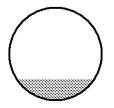
Summary for Reach 195R: POST TO WETS

Inflow Area =	9.719 ac, 16.34% Impervious, Inflow De	epth = 1.01" for cornell 002 event
Inflow =	7.17 cfs @ 12.24 hrs, Volume=	0.815 af
Outflow =	7.17 cfs @ 12.24 hrs, Volume=	0.815 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

Summary for Reach 245R: DMH 2 TO DMH 3

 Inflow Area =
 0.293 ac, 60.28% Impervious, Inflow Depth =
 2.18"
 for cornell 002 event


 Inflow =
 0.73 cfs @
 12.10 hrs, Volume=
 0.053 af

 Outflow =
 0.73 cfs @
 12.10 hrs, Volume=
 0.053 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.17 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.71 fps, Avg. Travel Time= 1.0 min

Peak Storage= 15 cf @ 12.10 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.06 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 104.0' Slope= 0.0289 '/' Inlet Invert= 93.50', Outlet Invert= 90.49'

Summary for Pond 1P: unit 4

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.52 hrs, Volume=	0.012 af, Atten= 93%, Lag= 85.9 min
Discarded =	0.01 cfs @ 13.52 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.24' @ 13.52 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 203.1 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 203.0 min (958.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	96.10'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.60'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	96.10' 1.0	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.52 hrs HW=97.24' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Summary for Pond 3P: unit7

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 100.42' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	99.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=100.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Summary for Pond 14P: unit5

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 104.52' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	103.20'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	103.70'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap

6 Rows of 1 Chambers					
Cap Storage= $+2.8$ cf x 2 x 6 rows = 33.1 cf					
0.018 af Total Available Storage					
Device Routing Invert Outlet Devices					
#1 Discarded 103.20' 1.020 in/hr Exfiltration over Wetted area					
Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=104.52' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)					
Summary for Pond 116P: CB 2					
Inflow Area = $0.192 ext{ ac}$, 53.87% Impervious, Inflow Depth = $2.06"$ for cornell 002 eventInflow = $0.46 ext{ cfs}$ @ $12.09 ext{ hrs}$, Volume= $0.033 ext{ af}$ Outflow = $0.46 ext{ cfs}$ @ $12.09 ext{ hrs}$, Volume= $0.033 ext{ af}$, Atten= 0%, Lag= 0.0 minPrimary = $0.46 ext{ cfs}$ @ $12.09 ext{ hrs}$, Volume= $0.033 ext{ af}$					
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.21' @ 12.09 hrs					
Device Routing Invert Outlet Devices					
#1 Primary 95.91' 18.0" Vert. Orifice/Grate C= 0.600					
Primary OutFlow Max=0.45 cfs @ 12.09 hrs HW=96.20' (Free Discharge)					
Summary for Pond 149P: CB 3					
Inflow Area = 0.100 ac , 72.55% Impervious, Inflow Depth = 2.41 " for cornell 002 eventInflow = 0.28 cfs @ 12.09 hrs , Volume= 0.020 af Outflow = 0.28 cfs @ 12.09 hrs , Volume= 0.020 af , Atten= 0%, Lag= 0.0 minPrimary = 0.28 cfs @ 12.09 hrs , Volume= 0.020 af					
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.14' @ 12.09 hrs					
Device Routing Invert Outlet Devices					
#1 Primary 95.91' 18.0" Vert. Orifice/Grate C= 0.600					
Primary OutFlow Max=0.27 cfs @ 12.09 hrs HW=96.14' (Free Discharge)					
Summary for Pond 156P: CB 5					

Inflow Area =	0.102 ac, 68.97% Impervious, Inflow De	epth = 2.41" for cornell 002 event
Inflow =	0.28 cfs @ 12.09 hrs, Volume=	0.021 af
Outflow =	0.28 cfs @ 12.09 hrs, Volume=	0.021 af, Atten= 0%, Lag= 0.0 min
Primary =	0.28 cfs @ 12.09 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

Peak Elev= 91.12' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.28 cfs @ 12.09 hrs HW=91.12' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.28 cfs @ 1.73 fps)

Summary for Pond 159P: CB 5

Inflow Area =	0.232 ac, 52.88% Impervious, Inflow D	Pepth = 2.06" for cornell 002 event
Inflow =	0.44 cfs @ 12.18 hrs, Volume=	0.040 af
Outflow =	0.44 cfs @ 12.18 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 min
Primary =	0.44 cfs @ 12.18 hrs, Volume=	0.040 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.19' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.43 cfs @ 12.18 hrs HW=91.19' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.43 cfs @ 1.95 fps)

Summary for Pond 167P: DCB 8

Inflow Area =	3.931 ac, 11.32% Impervious, Inflow I	Depth = 1.20" for cornell 002 event
Inflow =	3.20 cfs @ 12.39 hrs, Volume=	0.394 af
Outflow =	3.20 cfs @ 12.39 hrs, Volume=	0.394 af, Atten= 0%, Lag= 0.0 min
Primary =	3.20 cfs @ 12.39 hrs, Volume=	0.394 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.61' @ 12.39 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.77'	18.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=3.19 cfs @ 12.39 hrs HW=80.61' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 3.19 cfs @ 3.13 fps)

Summary for Pond 168P: CB 1

Inflow Area =	0.067 ac, 80.64% Impervious, Inflow D	epth = 2.60" for cornell 002 event
Inflow =	0.19 cfs @ 12.09 hrs, Volume=	0.014 af
Outflow =	0.19 cfs @ 12.09 hrs, Volume=	0.014 af, Atten= 0%, Lag= 0.0 min
Primary =	0.19 cfs @ 12.09 hrs, Volume=	0.014 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 102.48' @ 12.09 hrs

 Type III 24-hr
 cornell 002 Rainfall=3.36"

 Printed
 12/12/2022

 LLC
 Page 31

Device	Routing	Invert	Outlet Devices	
#1	Primary	102.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.19 cfs @ 12.09 hrs HW=102.48' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.19 cfs @ 1.56 fps)

Summary for Pond 170P: DCB 9

Inflow Area =	0.449 ac, 60.11% Impervious, Inflow D	epth = 2.14" for cornell 002 event
Inflow =	0.98 cfs @ 12.14 hrs, Volume=	0.080 af
Outflow =	0.98 cfs @ 12.14 hrs, Volume=	0.080 af, Atten= 0%, Lag= 0.0 min
Primary =	0.98 cfs @ 12.14 hrs, Volume=	0.080 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.78' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	80.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.97 cfs @ 12.14 hrs HW=80.78' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.97 cfs @ 2.42 fps)

Summary for Pond 171P: CHAMBERS UNIT 1

Inflow Area =	0.112 ac, 88.52% Impervious, Inflow D	epth = 2.81" for cornell 002 event
Inflow =	0.34 cfs @ 12.09 hrs, Volume=	0.026 af
Outflow =	0.03 cfs @ 13.14 hrs, Volume=	0.026 af, Atten= 92%, Lag= 63.0 min
Discarded =	0.03 cfs @ 13.14 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 99.95' @ 13.14 hrs Surf.Area= 0.023 ac Storage= 0.011 af

Plug-Flow detention time= 145.4 min calculated for 0.026 af (100% of inflow) Center-of-Mass det. time= 145.2 min (920.6 - 775.4)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.030 af	20.40'W x 49.50'L x 5.00'H Prismatoid
			0.116 af Overall - 0.042 af Embedded = 0.074 af x 40.0% Voids
#2	99.60'	0.042 af	Cultec R-902HD x 28 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			4 Rows of 7 Chambers
			Cap Storage= +2.8 cf x 2 x 4 rows = 22.1 cf
		0.072 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	99.10' 1.0	020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.03 cfs @ 13.14 hrs HW=99.95' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Summary for Pond 174P: CB 10

Inflow Area =	0.160 ac, 50.59% Impervious, Inflow De	epth = 1.97" for cornell 002 event
Inflow =	0.37 cfs @ 12.09 hrs, Volume=	0.026 af
Outflow =	0.37 cfs @ 12.09 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.0 min
Primary =	0.37 cfs @ 12.09 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 85.09' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices		
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600	

Primary OutFlow Max=0.36 cfs @ 12.09 hrs HW=85.09' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.36 cfs @ 1.85 fps)

Summary for Pond 175P: CHAMBERS UNIT 2

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 1.82" for cornell 002 event
Inflow =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af
Outflow =	0.05 cfs @ 13.90 hrs, Volume=	0.054 af, Atten= 93%, Lag= 108.4 min
Discarded =	0.05 cfs @ 13.90 hrs, Volume=	0.054 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.42' @ 13.90 hrs Surf.Area= 0.046 ac Storage= 0.024 af

Plug-Flow detention time= 201.3 min calculated for 0.054 af (100% of inflow) Center-of-Mass det. time= 201.1 min (1,029.0 - 827.9)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.056 af	28.78'W x 69.33'L x 5.00'H Prismatoid
			0.229 af Overall - 0.090 af Embedded = 0.139 af x 40.0% Voids
#2	96.00'	0.090 af	Cultec R-902HD x 60 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 10 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.146 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	95.50'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.05 cfs @ 13.90 hrs HW=96.42' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.05 cfs)

Summary for Pond 176P: CB 6

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 1.82" for cornell 002 event
Inflow =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af
Outflow =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af, Atten= 0%, Lag= 0.0 min
Primary =	0.75 cfs @ 12.09 hrs, Volume=	0.054 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.94' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	97.50'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.73 cfs @ 12.09 hrs HW=97.93' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.73 cfs @ 2.24 fps)

Summary for Pond 177P: CB 11

Inflow Area	=	0.038 ac,100.00% Impervious, Inflo	w Depth = 3.13" for cornell 002 event
Inflow	=	0.12 cfs @ 12.08 hrs, Volume=	0.010 af
Outflow :	=	0.12 cfs @ 12.08 hrs, Volume=	0.010 af, Atten= 0%, Lag= 0.0 min
Primary :	=	0.12 cfs @ 12.08 hrs, Volume=	0.010 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 84.96' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.12 cfs @ 12.08 hrs HW=84.96' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.12 cfs @ 1.39 fps)

Summary for Pond 178P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.52 hrs, Volume=	0.012 af, Atten= 93%, Lag= 85.9 min
Discarded =	0.01 cfs @_ 13.52 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.64' @ 13.52 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 203.1 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 203.0 min (958.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1	Discarded	95.50'	1.020 in/hr Exfiltration over Wetted area
----	-----------	--------	---

Discarded OutFlow Max=0.01 cfs @ 13.52 hrs HW=96.64' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Summary for Pond 182P: CB 12

Inflow Area =	• 0.241 ac	63.01% Impervious,	Inflow Depth = 2.3	23" for cornell 002 event
Inflow =	0.62 cfs (12.09 hrs, Volume	= 0.045 af	
Outflow =	0.62 cfs (12.09 hrs, Volume	= 0.045 af,	Atten= 0%, Lag= 0.0 min
Primary =	0.62 cfs 🌘	12.09 hrs, Volume	= 0.045 af	

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.45' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.61 cfs @ 12.09 hrs HW=79.44' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.61 cfs @ 2.13 fps)

Summary for Pond 185P: CB 13

Inflow Area =	0.105 ac, 67.31% Impervious, Inflow D	epth = 2.32" for cornell 002 event
Inflow =	0.28 cfs @ 12.09 hrs, Volume=	0.020 af
Outflow =	0.28 cfs @ 12.09 hrs, Volume=	0.020 af, Atten= 0%, Lag= 0.0 min
Primary =	0.28 cfs @ 12.09 hrs, Volume=	0.020 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.31' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.27 cfs @ 12.09 hrs HW=79.31' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.27 cfs @ 1.72 fps)

Summary for Pond 190P: CHAMBERS UNIT 4

Inflow Area =	4.924 ac, 21.44% Impervious, Inflow De	epth = 1.40" for cornell 002 event
Inflow =	4.19 cfs @ 12.34 hrs, Volume=	0.576 af
Outflow =	4.15 cfs @ 12.38 hrs, Volume=	0.526 af, Atten= 1%, Lag= 2.4 min
Discarded =	0.05 cfs @ 12.38 hrs, Volume=	0.084 af
Primary =	4.10 cfs @ 12.38 hrs, Volume=	0.442 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.26' @ 12.38 hrs Surf.Area= 0.039 ac Storage= 0.091 af

Plug-Flow detention time= 96.2 min calculated for 0.526 af (91% of inflow) Center-of-Mass det. time= 52.7 min (907.6 - 854.9)

 Type III 24-hr cornell 002 Rainfall=3.36"

 Printed 12/12/2022

 LC
 Page 35

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	76.00'	0.045 af	24.50'W x 69.00'L x 5.00'H Prismatoid
			0.194 af Overall - 0.082 af Embedded = 0.112 af x 40.0% Voids
#2	76.50'	0.082 af	Cultec R-902HD x 55 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			5 Rows of 11 Chambers
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf
		0.127 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	76.00' 1.0	20 in/hr Exfiltration over Wetted area
#2	Primary	78.40' 24.	.0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.05 cfs @ 12.38 hrs HW=79.26' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=4.09 cfs @ 12.38 hrs HW=79.26' (Free Discharge) [↑] -2=Orifice/Grate (Orifice Controls 4.09 cfs @ 3.16 fps)

Summary for Pond 193P: CHAMBERS UNIT 3

Inflow Area =	0.672 ac, 61.75% Impervious, Inflow De	epth = 2.24" for cornell 002 event
Inflow =	1.50 cfs @ 12.11 hrs, Volume=	0.125 af
Outflow =	0.07 cfs @ 15.57 hrs, Volume=	0.105 af, Atten= 96%, Lag= 207.2 min
Discarded =	0.07 cfs @ 15.57 hrs, Volume=	0.105 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 88.90' @ 15.57 hrs Surf.Area= 0.057 ac Storage= 0.069 af

Plug-Flow detention time= 401.6 min calculated for 0.105 af (84% of inflow) Center-of-Mass det. time= 334.2 min (1,143.3 - 809.1)

Volume	Invert	Avail.Storage	Storage Description
#1	87.10'	0.066 af	43.00'W x 57.30'L x 5.00'H Prismatoid
			0.283 af Overall - 0.117 af Embedded = 0.166 af x 40.0% Voids
#2	87.60'	0.117 af	Cultec R-902HD x 78 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 13 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.183 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	87.10' 1.0	20 in/hr Exfiltration over Wetted area
#2	Primary	90.00' 8.0	" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.07 cfs @ 15.57 hrs HW=88.90' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=87.10' (Free Discharge) [↑] 2=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 197P: unit6

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 100.42' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

	#1	Discarded	99.10'	1.020 in/hr Exfiltration over Wetted are
--	----	-----------	--------	--

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=100.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Summary for Pond 198P: unit8

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.03 hrs, Volume=	0.012 af, Atten= 92%, Lag= 57.0 min
Discarded =	0.01 cfs @ 13.03 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 95.11' @ 13.03 hrs Surf.Area= 0.009 ac Storage= 0.005 af

Plug-Flow detention time= 136.6 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 136.4 min (891.8 - 755.4)

 Type III 24-hr cornell 002 Rainfall=3.36"

 Printed 12/12/2022

 LC
 Page 37

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	94.10'	0.013 af	8.50'W x 47.10'L x 4.50'H Prismatoid
			0.041 af Overall - 0.010 af Embedded = 0.032 af x 40.0% Voids
#2	94.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
-		0.022 af	Total Available Storage
Daviaa	Douting		tlet Devisee

Device	Routing	Invert	Outlet Devices
#1	Discarded	94.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.03 hrs HW=95.11' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Summary for Pond 202P: unit9

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.92' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	90.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	91.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	90.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=91.92' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Summary for Pond 204P: unit10

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 90.92' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	89.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	90.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	89.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=90.92' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Summary for Pond 206P: unit11

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 94.12' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description	
#1	92.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids	
#2	93.30'	0.010 af	Cultec R-902HD x 6 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.018 af	Total Available Storage	
Device	Routing	Invert Ou	itlet Devices	
#1	Discarded	92.80' 1.0	020 in/hr Exfiltration over Wetted area	

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=94.12' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Summary for Pond 209P: unit12

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 94.82' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	93.50'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	94.00'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 93.50' 1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=94.82' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Summary for Pond 219P: unit13

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 93.12' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	91.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	92.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

 Type III 24-hr cornell 002 Rainfall=3.36"

 Printed 12/12/2022

 LC
 Page 40

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	91.80'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=93.12' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Summary for Pond 222P: unit14

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 88.32' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	87.00'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	87.50'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			U

Device	Routing	Invert	Outlet Devices
#1	Discarded	87.00'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=88.32' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Summary for Pond 230P: unit15

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 88.32' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

 Type III 24-hr cornell 002 Rainfall=3.36"

 Printed 12/12/2022

 LC
 Page 41

Prepared by ANTHONY A. ESPOSITO	•••
HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LL	C

Volume	Invert	Avail.Storage	Storage Description	
#1	87.00'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids	
#2	87.50'	0.010 af	Cultec R-902HD x 6 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.018 af	Total Available Storage	
Device	Routing	Invert Ou	tlet Devices	
#1	Discarded	87.00' 1.0	20 in/hr Exfiltration over Wetted area	
Discarde	ed OutFlow	Max=0.01 cfs @	13.41 hrs HW=88.32' (Free Discharge)	
[€] _1=Exi	filtration (Ex	filtration Controls	s 0.01 cfs)	
		S.	Immary for Bond 231D: Unit16	
			Immary for Pond 231P: unit16	
Inflow Ar			Impervious, Inflow Depth = 3.13" for cornell 002 event	
Inflow		15 cfs @ 12.08		
Outflow		01 cfs @ 13.41		
Discarde	viscarded = 0.01 cfs @ 13.41 hrs, Volume= 0.012 af			
Routing	by Stor-Ind m	ethod, Time Spa	n= 0.00-29.00 hrs, dt= 0.04 hrs	
			Area= 0.007 ac Storage= 0.005 af	
Plug_Elo	w detention ti	ime= 195 2 min (calculated for 0.012 af (100% of inflow)	
		me= 195.0 min (
		``````````````````````````````````````		
Volume	Invert		Storage Description	
#1	81.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids	
#2	82.10'	0.010 af		
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.040 -5	Tetel Aveilable Oteen ve	

0.018 af Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	81.60'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 13.41 hrs HW=82.92' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

# Summary for Pond 232P: unit17

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.12' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	78.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	79.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			<u> </u>

Device	Routing	Invert	Outlet Devices
#1	Discarded	78.80'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 13.41 hrs HW=80.12' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 233P: unit18

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 76.22' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	74.90'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	75.40'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	74.90' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=76.22' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 240P: unit19

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 77.62' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	76.30'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	76.80'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 76.30' **1.020 in/hr Exfiltration over Wetted area** 

**Discarded OutFlow** Max=0.01 cfs @ 13.41 hrs HW=77.62' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

# Summary for Pond 241P: unit20

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 78.42' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	77.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	77.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

 Type III 24-hr cornell 002 Rainfall=3.36"

 Printed 12/12/2022

 LC
 Page 44

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	77.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=78.42' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 242P: unit21

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 81.42' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	80.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	80.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices	
#1	Discarded	80.10'	1.020 in/hr Exfiltration over Wetted area	

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=81.42' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 243P: unit22

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 82.92' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

 Type III 24-hr cornell 002 Rainfall=3.36"

 Printed 12/12/2022

 LC
 Page 45

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description	
#1	81.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids	
#2	82.10'	0.010 af	Cultec R-902HD x 6 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.018 af	Total Available Storage	
Device	Routing	Invert Ou	utlet Devices	
#1	Discarded	81.60' <b>1.0</b>	020 in/hr Exfiltration over Wetted area	

**Discarded OutFlow** Max=0.01 cfs @ 13.41 hrs HW=82.92' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 244P: unit23

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af, Atten= 93%, Lag= 79.2 min
Discarded =	0.01 cfs @ 13.41 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 82.92' @ 13.41 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 195.2 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 195.0 min (950.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	81.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	82.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	81.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.41 hrs HW=82.92' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

# Summary for Pond 245P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 3.13" for cornell 002 event
Inflow =	0.15 cfs @ 12.08 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 13.52 hrs, Volume=	0.012 af, Atten= 93%, Lag= 85.9 min
Discarded =	0.01 cfs @ 13.52 hrs, Volume=	0.012 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 99.14' @ 13.52 hrs Surf.Area= 0.007 ac Storage= 0.005 af

Plug-Flow detention time= 203.1 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 203.0 min (958.4 - 755.4)

Volume	Invert	Avail.Storage	Storage Description
#1	98.00'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	98.50'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1	Discarded	98.00'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 13.52 hrs HW=99.14' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

### Summary for Pond 246P: unit 1

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
		/ - /	0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	95.50' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge) [↑] 1=Exfiltration (Controls 0.00 cfs)

#### Summary for Subcatchment 114S: TO CB 2

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 0.057 af, Depth= 3.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

	Area (sf	) CN	V Des	scription	l	
*	4,511	1 98	3 IMP	ERVIO	JS	
	3,863	3 74	4 >75	% Gras	s cover, G	ood, HSG C
	8,374	4 87	7 Wei	ighted A	Average	
	3,863	3	46.1	13% Pe	rvious Area	a
	4,511	1	53.8	87% lmj	pervious A	rea
	Tc Lengt	th Sl	ope Ve	elocity	Capacity	Description
_(r	nin) (fee	et) (1	ft/ft) (1	ft/sec)	(cfs)	
	6.0					Direct Entry, tr55 min.

#### Summary for Subcatchment 119S: TO CB 3

Runoff	=	0.44 cfs @	12.09 hrs,	Volume=	0.033 af, Depth= 3.9	96"
--------	---	------------	------------	---------	----------------------	-----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

	A	rea (sf)	CN	Description	า	
*		3,172	98	IMPERVIO	US	
		1,200	74	>75% Gras	ss cover, G	Good, HSG C
		4,372	91	Weighted /	Average	
		1,200		27.45% Pe	rvious Area	a
		3,172		72.55% lm	pervious A	геа
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	6.0			<u> </u>		Direct Entry, TR-55 MIN.

### Summary for Subcatchment 153S: TO CB 4

Runoff = 0.75 cfs @ 12.18 hrs, Volume= 0.068 af, Depth= 3.55"

	Area (sf)	CN	Description
*	5,335	98	IMPERVIOUS
	4,754	74	>75% Grass cover, Good, HSG C
	10,089	87	Weighted Average
	4,754		47.12% Pervious Area
	5,335		52.88% Impervious Area

#### oldoakenbucket2t Prepared by ANTHONY A. ESPOSITO

Type III 24-hr cornell 010 Rainfall=4.98" Printed

HydroCAD® 10.00-13	s/n 01291	© 2014 HydroCAD Software Solutions LLC	

nted	12/12/2022
	Page 48

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	12.0	50	0.0800	0.07	()	Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	1.1	188	0.0320	2.88		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	0.0	7	0.0200	2.87		Shallow Concentrated Flow, CD
						Paved Kv= 20.3 fps
	0.2	47	0.0300	3.52		Shallow Concentrated Flow, DE
_						Paved Kv= 20.3 fps
	13.3	292	Total			

### Summary for Subcatchment 155S: TO CB 5

Runoff	=	0.45 cfs @	12.09 hrs, Volume=	0.034 af, Depth= 3.96"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

Area (sf)	CN	Description	า						
3,072	98	IMPERVIO	IMPERVIOUS						
1,382	74	>75% Gras	ss cover, G	Good, HSG C					
4,454	91	Weighted <i>J</i>	Veighted Average						
1,382		31.03% Pe	31.03% Pervious Area						
3,072		68.97% lm	pervious A	rea					
		,	Capacity (cfs)	Description					
i.0				Direct Entry, tr-55 min					
	3,072 1,382 4,454 1,382 3,072 Tc Length	3,072 98 1,382 74 4,454 91 1,382 3,072 Tc Length Slope in) (feet) (ft/ft	3,072 98 IMPERVIO 1,382 74 >75% Gras 4,454 91 Weighted 1,382 31.03% Pe 3,072 68.97% Im Tc Length Slope Velocity in) (feet) (ft/ft) (ft/sec)	3,072 98 IMPERVIOUS 1,382 74 >75% Grass cover, G 4,454 91 Weighted Average 1,382 31.03% Pervious Are 3,072 68.97% Impervious A Tc Length Slope Velocity Capacity in) (feet) (ft/ft) (ft/sec) (cfs)					

# Summary for Subcatchment 166S: CB 6

1.33 cfs @ 12.09 hrs, Volume= Runoff 0.096 af, Depth= 3.25" =

	А	rea (sf)	CN	Description					
		8,834	74	>75% Gras	>75% Grass cover, Good, HSG C				
*		6,602	98	PAVEMEN	T, HSG C				
		15,436	84	Weighted /	Weighted Average				
		8,834		57.23% Pervious Area					
		6,602		42.77% lm	pervious A	rea			
	Тс	Length	Slope	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)				
	6.0					Direct Entry, tr-55 min			

#### Summary for Subcatchment 167S: TO CB 1

Runoff = 0.30 cfs @ 12.09 hrs, Volume= 0.023 af, Depth= 4.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

_	А	rea (sf)	CN	Description	า							
*		2,341	98	IMPERVIO	US							
		562	74	>75% Grass cover, Good, HSG C								
_		2,903	93	Weighted /	Average							
		562		19.36% Pe	rvious Area	a						
		2,341		80.64% Im	pervious A	rea						
	Тс	Length	Slope	Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	5.1	50	0.0600	0.16		Sheet Flow,						
						Grass: Dense n= 0.240 P2= 3.37"						
	0.1	22	0.0600	3.94		Shallow Concentrated Flow, BC						
						Unpaved Kv= 16.1 fps						
	1.1	185	0.0200	2.87		Shallow Concentrated Flow, CD						
_						Paved Kv= 20.3 fps						
	6.3	257	Total									

#### Summary for Subcatchment 169S: TO DCB 8

Runoff	=	6 70 cfs @	12.37 hrs, Volume=	0.797 af, Depth= 2.43"
Runon	-	0.70 015 @	12.37  ms,  volume	0.797 al, Depui – 2.40

	Area (sf)	CN	Description			
*	16,852	98	pavement			
*	2,343	98	EXIST HSE			
	97,544	74	>75% Grass cover, Good, HSG C			
	54,320	70	Woods, Good, HSG C			
*	183	98	WALL			
	171,242	75	Weighted Average			
	151,864		88.68% Pervious Area			
	19,378		11.32% Impervious Area			

Prepared by ANTHONY A. ESPOSITO

Type III 24-hr cornell 010 Rainfall=4.98" Printed 12/12/2022 HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC Page 50

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	20.9	50	0.0200	0.04		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	1.7	298	0.0330	2.92		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	0.7	136	0.0440	3.38		Shallow Concentrated Flow, CD
						Unpaved Kv= 16.1 fps
	0.2	48	0.0437	4.24		Shallow Concentrated Flow, DE
						Paved Kv= 20.3 fps
	0.0	7	0.0200	2.87		Shallow Concentrated Flow, EF
						Paved Kv= 20.3 fps
	2.6	550	0.0300	3.52		Shallow Concentrated Flow, FG

26.1 1,089 Total

# Summary for Subcatchment 173S: TO CB 10

Paved Kv= 20.3 fps

Runoff = 0.63 cfs @ 12.09 hrs, Volume= 0.046 af, Depth= 3.45"	12.09 hrs, Volume= 0.046 af, Depth= 3.45	12.09 hrs, Volume=	0.63 cfs @	Runoff =
---------------------------------------------------------------	------------------------------------------	--------------------	------------	----------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

	A	rea (sf)	CN	Description	n					
*		3,534	98	IMPERVIO	US					
		3,452	74	>75% Gras	ss cover, G	ood, HSG C				
		6,986	86	Weighted <i>i</i>	Neighted Average					
		3,452		49.41% Pe	49.41% Pervious Area					
		3,534		50.59% lm	pervious A	rea				
(	Tc min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description				
	6.0					Direct Entry, TR55 MIN				
				0						

Summary for Subcatchment 176S: TO CB 11

0.18 cfs @ 12.08 hrs, Volume= Runoff = 0.015 af, Depth= 4.74"

_	A	rea (sf)	CN	Description	n	
*		1,635	98	<b>IMPERVIO</b>	US	
		1,635		100.00% lr	mpervious <i>i</i>	Area
	Тс	Length	Slope	<ul> <li>Velocity</li> </ul>	Capacity	Description
_	(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
	6.0					Direct Entry, tr-55 min

#### Summary for Subcatchment 181S: TO CB 12

Runoff = 1.02 cfs @ 12.09 hrs, Volume= 0.075 af, Depth= 3.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

	Area (sf)	CN	Description	n						
*	6,607	98	IMPERVIC	IMPERVIOUS						
	3,879	74	>75% Gra	>75% Grass cover, Good, HSG C						
	10,486	89	Weighted	Weighted Average						
	3,879		36.99% P€	36.99% Pervious Area						
	6,607		63.01% lm	pervious A	rea					
(*	Tc Length nin) (feet)	Slop (ft/fl	,	Capacity (cfs)	Description					
(I		(IVI		(015)						
	6.0				Direct Entry, TR 55 MIN					
			_							

#### Summary for Subcatchment 184S: TO CB 13

Runoff	=	0.45 cfs @	12.09 hrs, Volume=	0.034 af, Depth= 3.86"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

	Area (sf)	CN	Description						
*	3,082	98	IMPERVIOUS	IMPERVIOUS					
	1,497	74	>75% Grass cover, Good, HSG C						
	4,579	90	Weighted Average						
	1,497		32.69% Pervious Area						
	3,082		67.31% Impervious Area						
1)	Tc Length min) (feet)	Slop (ft/f							
	6.0		Direct Entry, TR 55 MIN						
	Summary for Subcatchment 193S: EXIST TO WETLANDS								

Runoff = 17.04 cfs @ 12.29 hrs, Volume= 1.836 af, Depth= 2.18"

 Type III 24-hr cornell 010 Rainfall=4.98"

 Printed 12/12/2022

 LC
 Page 52

Prepared by ANTHONY A.	ESPOSITO
HydroCAD® 10.00-13 s/n 01291	© 2014 HydroCAD Software Solutions LLC

	А	rea (sf)	CN	Description	n	
	З	21,168	70	Woods, Ge	ood, HSG (	C
*		8,364	98	ROOF, HS	GC	
*		436	98	CONCRET	FE, HSG C	
		9,975	96	Gravel sur	face, HSG	С
		44,126	74	>75% Gras	ss cover, G	lood, HSG C
*		10,759	98	PAVEMEN	IT, HSG C	
_		44,910	65	Brush, Goo	od, HSG C	
	4	39,738	72	Weighted /	Average	
	4	20,179		95.55% Pe	ervious Area	a
		19,559		4.45% Imp	ervious Are	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	) (ft/sec)	(cfs)	
	17.8	50	0.0300	0.05		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	2.5	524	0.0458	3.45		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	20.3	574	Total			

# Summary for Subcatchment 194S: PROP TO WETS

Runoff = 9.08 cfs @ 12.16 hrs, Volume=

0.778 af, Depth= 2.26"

/	Area (sf)	CN	Descriptio	า					
	62,378	70	Woods, Go	Noods, Good, HSG C					
	111,644	74	>75% Gras	ss cover, G	Bood, HSG C				
*	1,394	98	WALLS, H	SG C					
	479	96	Gravel sur	face, HSG	В				
*	3,703	98	PAVEMEN	Т					
	179,598	73	Weighted <i>i</i>	Average					
	174,501		97.16% Pe	ervious Area	a				
	5,097		2.84% Imp	ervious Are	ea				
To	· · ·		•	Capacity	Description				
(min)	/	(ft/ft)	. ,	(cfs)					
8.0	50	0.0200	0.10		Sheet Flow, AB				
					Grass: Dense n= 0.240 P2= 3.37"				
0.5	68	0.0200	2.28		Shallow Concentrated Flow, BC				
					Unpaved Kv= 16.1 fps				
0.1	24	0.0200	2.87		Shallow Concentrated Flow, CD				
					Paved Kv= 20.3 fps				
2.6	532	0.0450	3.42		Shallow Concentrated Flow, DE				
					Unpaved Kv= 16.1 fps				
11.2	674	Total							

#### Summary for Subcatchment 195S: roof unit2

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

A	rea (sf)	CN	Description	า			
	1,992	98	Roofs, HS	G A			
	1,992		100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)			
6.0					Direct Entry, tr-55 min		

# Summary for Subcatchment 196S: roof unit3

Runoff	=	0.22 cfs @	12.08 hrs,	Volume=	0.018 af, Depth= 4.74"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

A	rea (sf)	CN	Description	า					
	1,992	98	Roofs, HS	G A					
	1,992		100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
6.0					Direct Entry, tr-55 min				
	Summary for Subcatchment 200S: roof unit8								

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Area (sf)	CN	Descriptio	n				
1,992	98	Roofs, HS	G A				
1,992		100.00% Impervious Area					
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description			
6.0				Direct Entry, tr-55 min			

#### Summary for Subcatchment 201S: roof uniT9

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

A	rea (sf)	CN	Description	n			
	1,992	98	Roofs, HS	G A			
	1,992		100.00% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry, tr-55 min		

### Summary for Subcatchment 203S: roof uniT10

Runoff	=	0.22 cfs @	12.08 hrs,	Volume=	0.018 af, Depth= 4.74"	
--------	---	------------	------------	---------	------------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

Area (s	sf) C	CN E	Descriptior	า				
1,99	92 9	98 F	Roofs, HS	GΑ				
1,99	92	100.00% Impervious Area						
Tc Leng (min) (feo		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, tr-55 min			
Summary for Subcatchment 205S: roof uniT11								

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Area (sf)	CN	Description	n				
1,992	98	98 Roofs, HSG A					
1,992	100.00% Impervious Area						
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description			
6.0				Direct Entry, tr-55 min			

#### Summary for Subcatchment 206S: TO DCB 9

Runoff = 1.65 cfs @ 12.13 hrs, Volume= 0.137 af, Depth= 3.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

	Area (sf)	CN	Description						
*	11,762	98	98 pavement						
	7,805	74	74 >75% Grass cover, Good, HSG C						
	19,567	88 Weighted Average							
	7,805	39.89% Pervious Area							
	11,762	(	60.11% Impervious Area						
T	c Length	Slope	Velocity	Capacity	Description				
(min	) (feet)	(ft/ft)	(ft/sec)	(cfs)					
8.0	D 50	0.0200	0.10		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 3.37"				
0.1	1 11	0.0200	2.28		Shallow Concentrated Flow, BC				
					Unpaved Kv= 16.1 fps				
0.0	D 7	0.0200	2.87		Shallow Concentrated Flow, CD				
					Paved Kv= 20.3 fps				
1.0	5 333	0.0300	3.52		Shallow Concentrated Flow, DE				
					Paved Kv= 20.3 fps				
9.	7 401	Total							

Summary for Subcatchment 207S: roof unit4

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

Area	ı (sf)	CN	Descriptior	า				
1	,992	98	8 Roofs, HSG A					
1	,992	100.00% Impervious Area						
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, tr-55 min			

#### Summary for Subcatchment 208S: roof uniT12

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Type III 24-hr	cornell 010 Rainfall=4.98"

Printed 12/12/2022

Page 56

Prepared by ANTHONY A. ESPOSITO

oldoakenbucket2t

6.0

HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Area (sf) CN Description	-					
Area (sf) CN Description 1,992 98 Roofs, HSG A						
1,992 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description						
(min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry, tr-55 min						
Summary for Subcatchment 218S: roof uniT13						
Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 010 Rainfall=4.98"						
Area (sf) CN Description						
1,992 98 Roofs, HSG A						
1,992 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry, tr-55 min						
Summary for Subcatchment 220S: roof unit5						
Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 010 Rainfall=4.98"						
Area (sf) CN Description						
1,992 98 Roofs, HSG A 1,992 100.00% Impervious Area						
1,992 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description						
(min) (feet) (ft/ft) (ft/sec) (cfs)						

## Summary for Subcatchment 221S: roof uniT14

Direct Entry, tr-55 min

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

 Area (sf)	CN	Description
1,992	98	Roofs, HSG A
1,992		100.00% Impervious Area

oldoakenbucket2t	Type III 24-hr cornell 010 Rainfall=4.98"
Prepared by ANTHONY A. ESPOSITO	Printed 12/12/2022
HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions	LLC Page 57
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, tr-4	55 min
Summary for Subcatchment 22	23S: roof unit6
Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.0	18 af, Depth= 4.74"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time S Type III 24-hr cornell 010 Rainfall=4.98"	pan= 0.00-29.00 hrs, dt= 0.04 hrs
Area (sf) CN Description	
1,992 98 Roofs, HSG A	
1,992 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, tr-	55 min
Summary for Subcatchment 22	24S: roof unit1
Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.0	18 af, Depth= 4.74"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time S Type III 24-hr cornell 010 Rainfall=4.98"	pan= 0.00-29.00 hrs, dt= 0.04 hrs
Area (sf) CN Description	
1,992 98 Roofs, HSG A	
1,992 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, tr-4	55 min
Summary for Subcatchment 22	25S: roof unit7
Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.0	18 af, Depth= 4.74"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time S Type III 24-hr cornell 010 Rainfall=4.98"	pan= 0.00-29.00 hrs, dt= 0.04 hrs
Area (sf) CN Description	
1,992 98 Roofs, HSG A	
1,992 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, tr-	55 min

#### Summary for Subcatchment 226S: roof uniT15

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lr	mpervious .	Area
Tc (min)	Length (feet)	Slope (ft/ft)	velocity (ft/sec)	Capacity (cfs)	
6.0					Direct Entry, tr-55 min

## Summary for Subcatchment 227S: roof uniT16

Runoff	=	0.22 cfs @	12.08 hrs,	Volume=	0.018 af, Depth= 4.74"	
--------	---	------------	------------	---------	------------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

Area	(sf)	CN	Descriptio	า				
1,	992	98	Roofs, HS	GΑ				
1,	992		100.00% Ir	npervious <i>i</i>	Area			
	ength (feet)							
6.0					Direct Entry, tr-55 min			
	Summary for Subcatchment 228S: roof uniT17							

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Area (sf)	CN	Descriptio	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% Ir	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/l		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 229S: roof uniT18

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

Area (sf)	CN Desc	cription	
1,992	98 Roof	fs, HSG A	
1,992	100.0	00% Impervious A	Area
Tc Length (min) (feet) 6.0		elocity Capacity t/sec) (cfs)	Description Direct Entry, tr-55 min

## Summary for Subcatchment 234S: roof uniT19

Runoff	=	0.22 cfs @	12.08 hrs, Volume=	0.018 af, Depth= 4.74"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

Area (sf)	CN	Descriptio	า				
1,992	98	Roofs, HS	G A				
1,992		100.00% Ir	npervious <i>i</i>	Area			
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)						
6.0				Direct Entry, tr-55 min			
Summary for Subcatchment 235S: roof uniT20							

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Area (sf)	CN	Descriptio	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% Ir	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/l		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 236S: roof uniT21

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lı	mpervious.	Area
Tc (min) 6.0	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description Direct Entry, tr-55 min

## Summary for Subcatchment 237S: roof uniT22

Runoff	=	0.22 cfs @	12.08 hrs,	Volume=	0.018 af, Depth= 4.74"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

A	rea (sf)	CN	Description	า				
	1,992	98	Roofs, HS	GA				
	1,992		100.00% Ir	npervious <i>i</i>	Area			
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description			
6.0					Direct Entry, tr-55 min			
	Summary for Subcatchment 238S: roof uniT23							

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	GA	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 239S: roof uniT24

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.018 af, Depth= 4.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 010 Rainfall=4.98"

Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% lı	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Reach 118R: CB 2 TO DMH 1

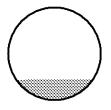
Inflow Area =	0.192 ac, 53.87% Impervious, Inflow I	Depth = 3.55" for cornell 010 event
Inflow =	0.78 cfs @ 12.09 hrs, Volume=	0.057 af
Outflow =	0.78 cfs @ 12.09 hrs, Volume=	0.057 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.85 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.29 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'




## Summary for Reach 150R: CB 3 TO DMH 1

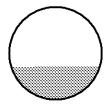
Inflow Area =	0.100 ac, 72.55% Impervious, Inflow I	Depth = 3.96"	for cornell 010 event
Inflow =	0.44 cfs @ 12.09 hrs, Volume=	0.033 af	
Outflow =	0.44 cfs @ 12.09 hrs, Volume=	0.033 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.28 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'




# Summary for Reach 151R: DMH 1 TO DMH 2

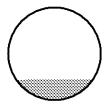
Inflow Area =	0.293 ac, 60.28% Imperviou	s, Inflow Depth = 3.69" for cornell 010 event
Inflow =	1.22 cfs @ 12.09 hrs, Volu	ne= 0.090 af
Outflow =	1.22 cfs @ 12.09 hrs, Volu	ne= 0.090 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.75 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.54 fps, Avg. Travel Time= 1.5 min

Peak Storage= 35 cf @ 12.09 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.37 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 138.0' Slope= 0.0151 '/' Inlet Invert= 95.68', Outlet Invert= 93.60'




## Summary for Reach 157R: CB 5 TO DMH 3

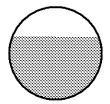
Inflow Area =	0.102 ac, 68.97% Impervious, Inflow	/ Depth = 3.96"	for cornell 010 event
Inflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af	
Outflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.38 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'




## Summary for Reach 158R: DMH 3 TO HYDRO2

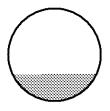
Inflow Area =	0.626 ac, 58.96% Impervious, Inflow D	Depth = 3.68" for cornell 010 event
Inflow =	2.27 cfs @ 12.11 hrs, Volume=	0.192 af
Outflow =	2.27 cfs @ 12.11 hrs, Volume=	0.192 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.96 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 0.5 min

Peak Storage= 22 cf @ 12.11 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.79 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 39.0' Slope= 0.0062 '/' Inlet Invert= 90.39', Outlet Invert= 90.15'




## Summary for Reach 160R: CB 4 TO DMH 3

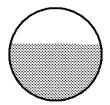
Inflow Area	a =	0.232 ac, 5	52.88% Impe	rvious,	Inflow Depth =	3.55"	for cornell 010 event
Inflow	=	0.75 cfs @	12.18 hrs, `	Volume	= 0.06	8 af	
Outflow	=	0.75 cfs @	12.18 hrs, `	Volume	= 0.068	Baf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.90 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.18 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'




## Summary for Reach 164R: HYDRO2 BASIN 3

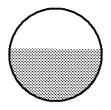
Inflow Area =	0.626 ac, 58.96% Impervious, Inflow I	Depth = 3.68" for co	rnell 010 event
Inflow =	2.27 cfs @ 12.11 hrs, Volume=	0.192 af	
Outflow =	2.27 cfs @ 12.11 hrs, Volume=	0.192 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.47 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.55 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.62' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.25 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 6.0' Slope= 0.0083 '/' Inlet Invert= 90.05', Outlet Invert= 90.00'




## Summary for Reach 168R: DCB 8 TO DMH 4

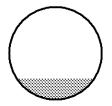
Inflow Area =	3.931 ac, 11.32% Impervious, Inflow D	Depth = 2.43" for cornell 010 event
Inflow =	6.70 cfs @ 12.37 hrs, Volume=	0.797 af
Outflow =	6.70 cfs @ 12.37 hrs, Volume=	0.797 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.51 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.72 fps, Avg. Travel Time= 0.1 min

Peak Storage= 11 cf @ 12.37 hrs Average Depth at Peak Storage= 0.85' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.97 cfs

18.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0109 '/' Inlet Invert= 79.77', Outlet Invert= 79.65'




# Summary for Reach 169R: CB 1 TO HYDRO 1

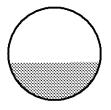
Inflow Area	=	0.067 ac, 8	30.64% Imp	ervious,	Inflow Dept	h= 4.18	for cornell 010	event
Inflow =	=	0.30 cfs @	12.09 hrs,	Volume	e 0.	.023 af		
Outflow =	=	0.30 cfs @	12.09 hrs,	Volume	= 0.	.023 af, <i>1</i>	tten= 0%, Lag= 0.	1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.16 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.71 fps, Avg. Travel Time= 0.6 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 24.0' Slope= 0.0050 '/' Inlet Invert= 102.27', Outlet Invert= 102.15'




# Summary for Reach 171R: DCB 9 TO DMH 4

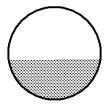
Inflow Area =	0.449 ac, 60.11% Impervious, Inflow	Depth = 3.65"	for cornell 010 event
Inflow =	1.65 cfs @ 12.13 hrs, Volume=	0.137 af	
Outflow =	1.65 cfs @ 12.13 hrs, Volume=	0.137 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.42 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.88 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.13 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.66 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 7.0' Slope= 0.0171 '/' Inlet Invert= 80.27', Outlet Invert= 80.15'




## Summary for Reach 172R: DMH 4 HYDRO3

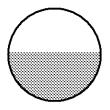
Inflow Area =	4.380 ac, 16.32% Impervie	bus, Inflow Depth = 2.56" for cornell 010 event
Inflow =	7.49 cfs @ 12.35 hrs, Vol	ume= 0.934 af
Outflow =	7.49 cfs @ 12.35 hrs, Vol	ume= 0.934 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.67 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.08 fps, Avg. Travel Time= 0.4 min

Peak Storage= 66 cf @ 12.35 hrs Average Depth at Peak Storage= 0.87' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 18.93 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 50.0' Slope= 0.0070 '/' Inlet Invert= 79.05', Outlet Invert= 78.70'




# Summary for Reach 173R: CB 6 TO HYDRO 4

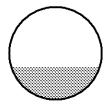
Inflow Area =	0.354 ac, 42.77% Impervious, Inflow I	Depth = 3.25"	for cornell 010 event
Inflow =	1.33 cfs @ 12.09 hrs, Volume=	0.096 af	
Outflow =	1.33 cfs @ 12.09 hrs, Volume=	0.096 af, Atte	en= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.10 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.09 fps, Avg. Travel Time= 0.7 min

Peak Storage= 19 cf @ 12.09 hrs Average Depth at Peak Storage= 0.53' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.38 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 45.0' Slope= 0.0044 '/' Inlet Invert= 97.50', Outlet Invert= 97.30'




# Summary for Reach 174R: HYDRO 4 TO CHAMBERS 2

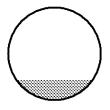
Inflow Area =	0.354 ac, 42.77% Impervious, Inflow D	Depth = 3.25" for cornell 010 event
Inflow =	1.33 cfs @ 12.09 hrs, Volume=	0.096 af
Outflow =	1.33 cfs @ 12.09 hrs, Volume=	0.096 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.40 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.85 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 97.30', Outlet Invert= 97.20'




# Summary for Reach 175R: CB 10 TO DMH 7

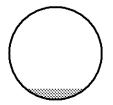
Inflow Area =	0.160 ac, 50.59% Impervious,	Inflow Depth = 3.45" for cornell 010 ev	ent
Inflow =	0.63 cfs @ 12.09 hrs, Volume	= 0.046 af	
Outflow =	0.63 cfs @ 12.09 hrs, Volume	= 0.046 af, Atten= 0%, Lag= 0.0 i	min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.14 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'




## Summary for Reach 178R: CB 11 TO DMH 7

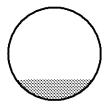
Inflow Area =	=	0.038 ac,10	0.00% Imp	ervious,	Inflow Dep	th = 4.	.74" 1	or corr	ell 010 event
Inflow =		0.18 cfs @	12.08 hrs,	Volume	e 0	).015 af			
Outflow =		0.18 cfs @	12.08 hrs,	Volume	= 0	).015 af	, Atter	ı= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.55 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'




## Summary for Reach 179R: DMH 7 TO DMH 6

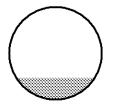
Inflow Are	a =	0.198 ac, 59.96% Impervious, Inflow Depth = 3.69" for cornell 010 e	vent
Inflow	=	0.81 cfs @ 12.09 hrs, Volume= 0.061 af	
Outflow	=	0.81 cfs @ 12.09 hrs, Volume= 0.061 af, Atten= 0%, Lag= 0.2	min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.02 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.83 fps, Avg. Travel Time= 0.8 min

Peak Storage= 13 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 93.0' Slope= 0.0400 '/' Inlet Invert= 84.25', Outlet Invert= 80.53'




# Summary for Reach 181R: HYDRO 1 TO CHAMB 1

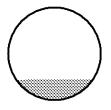
Inflow Area	=	0.067 ac, 8	30.64% Imp	ervious,	Inflow Dept	th = 4.1	8" for	cornell 010 event
Inflow	=	0.30 cfs @	12.09 hrs,	Volume	= 0	.023 af		
Outflow :	=	0.30 cfs @	12.09 hrs,	Volume	= 0	.023 af,	Atten=	0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.08 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.68 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.40 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0045 '/' Inlet Invert= 102.05', Outlet Invert= 102.00'




## Summary for Reach 182R: HYDRO 3 TO CHAMBERS 3

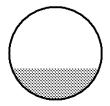
Inflow Area =	4.578 ac, 18.21% Impervious, Inflow I	Depth = 2.61"	for cornell 010 event
Inflow =	7.80 cfs @ 12.34 hrs, Volume=	0.995 af	
Outflow =	7.80 cfs @ 12.34 hrs, Volume=	0.995 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 14.38 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.77 fps, Avg. Travel Time= 0.0 min

Peak Storage= 3 cf @ 12.34 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 67.87 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0900 '/' Inlet Invert= 78.95', Outlet Invert= 78.50'




# Summary for Reach 183R: CB 12 TO DMH 5

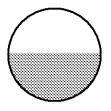
Inflow Area =	0.241 ac, 6	63.01% Imp	ervious,	Inflow Dep	th = 3	.75"	for corr	nell 010 event
Inflow =	1.02 cfs @	12.09 hrs,	Volume	)= Ö	).075 af			
Outflow =	1.02 cfs @	12.09 hrs,	Volume	)= 0	).075 af	, Atte	n <b>= 0</b> %,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.34 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.44 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.11 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 12.0' Slope= 0.0133 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'




## Summary for Reach 184R: HYDRO5 BASIN 4

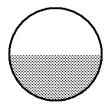
Inflow Are	a =	0.346 ac, 64.31% Impervious, Inflow	Depth = 3.78"	for cornell 010 event
Inflow	=	1.47 cfs @ 12.09 hrs, Volume=	0.109 af	
Outflow	=	1.47 cfs @ 12.09 hrs, Volume=	0.109 af, Atte	ən= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.57 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.20 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.76 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0060 '/' Inlet Invert= 78.53', Outlet Invert= 78.50'




# Summary for Reach 185R: DMH 6 TO HYDRO 3

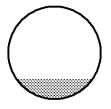
Inflow Area =	0.198 ac, 59.96% Impervious, Inflow D	Depth = 3.69" for cornell 010 event
Inflow =	0.81 cfs @ 12.09 hrs, Volume=	0.061 af
Outflow =	0.81 cfs @ 12.09 hrs, Volume=	0.061 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.11 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.66 fps, Avg. Travel Time= 0.9 min

Peak Storage= 14 cf @ 12.09 hrs Average Depth at Peak Storage= 0.49' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.68 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 36.0' Slope= 0.0022 '/' Inlet Invert= 79.33', Outlet Invert= 79.25'




## Summary for Reach 186R: CB 13 TO DMH 5

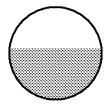
Inflow Area =	0.105 ac, 67.31% Impervious, Inflow	Depth = 3.86"	for cornell 010 event
Inflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af	
Outflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.55 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.30 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0145 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'




# Summary for Reach 187R: DMH 5 TO HYDRO 5

Inflow Area =	0.346 ac, 64.31% Impervious,	Inflow Depth = 3.78" for cornell 010 event
Inflow =	1.47 cfs @ 12.09 hrs, Volume	= 0.109 af
Outflow =	1.47 cfs @ 12.09 hrs, Volume	e= 0.109 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.33 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 0.5 min

Peak Storage= 14 cf @ 12.09 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 32.0' Slope= 0.0050 '/' Inlet Invert= 78.79', Outlet Invert= 78.63'



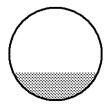
# Summary for Reach 195R: POST TO WETS

Inflow Area =	9.719 ac,	16.34% Impervious,	Inflow Depth = 2.1	7" for cornell 010 event
Inflow =	16.25 cfs @	12.18 hrs, Volume	= 1.757 af	
Outflow =	16.25 cfs @	12.18 hrs, Volume	= 1.757 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

### Summary for Reach 245R: DMH 2 TO DMH 3

 Inflow Area =
 0.293 ac, 60.28% Impervious, Inflow Depth =
 3.69"
 for cornell 010 event


 Inflow =
 1.22 cfs @
 12.09 hrs, Volume=
 0.090 af

 Outflow =
 1.21 cfs @
 12.10 hrs, Volume=
 0.090 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.99 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.94 fps, Avg. Travel Time= 0.9 min

Peak Storage= 21 cf @ 12.10 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.06 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 104.0' Slope= 0.0289 '/' Inlet Invert= 93.50', Outlet Invert= 90.49'



#### Summary for Pond 1P: unit 4

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 14.12 hrs, Volume=	0.018 af, Atten= 95%, Lag= 122.3 min
Discarded =	0.01 cfs @ 14.12 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.88' @ 14.12 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 324.5 min calculated for 0.018 af (97% of inflow) Center-of-Mass det. time= 307.0 min (1,055.1 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	96.10'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.60'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	96.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 14.12 hrs HW=97.88' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

## Summary for Pond 3P: unit7

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 101.23' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	99.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=101.23' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

## Summary for Pond 14P: unit5

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 105.33' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	103.20'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	103.70'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap

6 Rows of 1 Chambers			
Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf			
0.018 af Total Available Storage			
Device Routing Invert Outlet Devices			
#1 Discarded 103.20' 1.020 in/hr Exfiltration over Wetted area			
Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=105.33' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)			
Summary for Pond 116P: CB 2			
Inflow Area =       0.192 ac, 53.87% Impervious, Inflow Depth = 3.55" for cornell 010 event         Inflow =       0.78 cfs @ 12.09 hrs, Volume=       0.057 af         Outflow =       0.78 cfs @ 12.09 hrs, Volume=       0.057 af, Atten= 0%, Lag= 0.0 min         Primary =       0.78 cfs @ 12.09 hrs, Volume=       0.057 af			
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.30' @ 12.09 hrs			
Device Routing Invert Outlet Devices			
#1 Primary 95.91' 18.0" Vert. Orifice/Grate C= 0.600			
Primary OutFlow Max=0.77 cfs @ 12.09 hrs HW=96.30' (Free Discharge)			
Summary for Pond 149P: CB 3			
Inflow Area = $0.100 \text{ ac}$ , 72.55% Impervious, Inflow Depth = $3.96"$ for cornell 010 eventInflow = $0.44 \text{ cfs}$ @ $12.09 \text{ hrs}$ , Volume= $0.033 \text{ af}$ Outflow = $0.44 \text{ cfs}$ @ $12.09 \text{ hrs}$ , Volume= $0.033 \text{ af}$ , Atten= 0%, Lag= 0.0 minPrimary = $0.44 \text{ cfs}$ @ $12.09 \text{ hrs}$ , Volume= $0.033 \text{ af}$ Routing by Stor-Ind method, Time Span= $0.00-29.00 \text{ hrs}$ , dt= $0.04 \text{ hrs}$			
Peak Elev= 96.20' @ 12.09 hrs			
Device         Routing         Invert         Outlet Devices           #1         Primary         95.91'         18.0" Vert. Orifice/Grate         C= 0.600			
<ul> <li>#1 Primary 95.91' 18.0" Vert. Orifice/Grate C= 0.600</li> <li>Primary OutFlow Max=0.44 cfs @ 12.09 hrs HW=96.20' (Free Discharge)</li> <li>¹—1=Orifice/Grate (Orifice Controls 0.44 cfs @ 1.83 fps)</li> </ul>			
Summary for Pond 156P: CB 5			

Inflow Area =	0.102 ac, 68.97% Impervious, Inflow De	epth = 3.96" for cornell 010 event
Inflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af
Outflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af, Atten= 0%, Lag= 0.0 min
Primary =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

Peak Elev= 91.19' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.44 cfs @ 12.09 hrs HW=91.19' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.44 cfs @ 1.96 fps)

## Summary for Pond 159P: CB 5

Inflow Area =	0.232 ac, 52.88% Impervious, Inflow De	epth = 3.55" for cornell 010 event
Inflow =	0.75 cfs @ 12.18 hrs, Volume=	0.068 af
Outflow =	0.75 cfs @ 12.18 hrs, Volume=	0.068 af, Atten= 0%, Lag= 0.0 min
Primary =	0.75 cfs @ 12.18 hrs, Volume=	0.068 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.30' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.74 cfs @ 12.18 hrs HW=91.30' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.74 cfs @ 2.25 fps)

## Summary for Pond 167P: DCB 8

Inflow Area =	3.931 ac, 11.32% Impervious, Inflow D	Pepth = 2.43" for cornell 010 event
Inflow =	6.70 cfs @ 12.37 hrs, Volume=	0.797 af
Outflow =	6.70 cfs @ 12.37 hrs, Volume=	0.797 af, Atten= 0%, Lag= 0.0 min
Primary =	6.70 cfs @ 12.37 hrs, Volume=	0.797 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 81.13' @ 12.37 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.77'	18.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=6.68 cfs @ 12.37 hrs HW=81.13' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 6.68 cfs @ 3.97 fps)

#### Summary for Pond 168P: CB 1

Inflow Area =	0.067 ac, 80.64% Impervious, Inflow De	epth = 4.18" for cornell 010 event
Inflow =	0.30 cfs @ 12.09 hrs, Volume=	0.023 af
Outflow =	0.30 cfs @ 12.09 hrs, Volume=	0.023 af, Atten= 0%, Lag= 0.0 min
Primary =	0.30 cfs @ 12.09 hrs, Volume=	0.023 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 102.54' @ 12.09 hrs

 Type III 24-hr
 cornell 010 Rainfall=4.98"

 Printed
 12/12/2022

 LC
 Page 77

Device	Routing	Invert	Outlet Devices	
#1	Primary	102.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.30 cfs @ 12.09 hrs HW=102.54' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.30 cfs @ 1.76 fps)

# Summary for Pond 170P: DCB 9

Inflow Area =	0.449 ac, 60.11% Impervious, Inflow De	epth = 3.65" for cornell 010 event
Inflow =	1.65 cfs @ 12.13 hrs, Volume=	0.137 af
Outflow =	1.65 cfs @ 12.13 hrs, Volume=	0.137 af, Atten= 0%, Lag= 0.0 min
Primary =	1.65 cfs @ 12.13 hrs, Volume=	0.137 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.96' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	80.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.62 cfs @ 12.13 hrs HW=80.96' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.62 cfs @ 2.82 fps)

# Summary for Pond 171P: CHAMBERS UNIT 1

Inflow Area =	0.112 ac, 88.52% Impervious, Inflow De	epth = 4.41" for cornell 010 event
Inflow =	0.52 cfs @ 12.09 hrs, Volume=	0.041 af
Outflow =	0.03 cfs @ 14.02 hrs, Volume=	0.041 af, Atten= 95%, Lag= 115.8 min
Discarded =	0.03 cfs @ 14.02 hrs, Volume=	0.041 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 100.44' @ 14.02 hrs Surf.Area= 0.023 ac Storage= 0.019 af

Plug-Flow detention time= 266.1 min calculated for 0.041 af (100% of inflow) Center-of-Mass det. time= 266.0 min (1,031.6 - 765.6)

Volume	Invert	Avail.Storage	Storage Description	
#1	99.10'	0.030 af	20.40'W x 49.50'L x 5.00'H Prismatoid	
			0.116 af Overall - 0.042 af Embedded = 0.074 af x 40.0% Voids	
#2	99.60'	0.042 af	Cultec R-902HD x 28 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			4 Rows of 7 Chambers	
			Cap Storage= +2.8 cf x 2 x 4 rows = 22.1 cf	
		0.072 af	Total Available Storage	
Device	Routing	Invert Ou	itlet Devices	
#1	Discarded	99.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area	

Discarded OutFlow Max=0.03 cfs @ 14.02 hrs HW=100.44' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.03 cfs)

## Summary for Pond 174P: CB 10

Inflow Area =	0.160 ac, 50.59% Impervious, Inflow De	epth = 3.45" for cornell 010 event
Inflow =	0.63 cfs @ 12.09 hrs, Volume=	0.046 af
Outflow =	0.63 cfs @ 12.09 hrs, Volume=	0.046 af, Atten= 0%, Lag= 0.0 min
Primary =	0.63 cfs @ 12.09 hrs, Volume=	0.046 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 85.19' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices		
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600	

Primary OutFlow Max=0.62 cfs @ 12.09 hrs HW=85.19' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.62 cfs @ 2.15 fps)

## Summary for Pond 175P: CHAMBERS UNIT 2

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 3.25" for cornell 010 event
Inflow =	1.33 cfs @ 12.09 hrs, Volume=	0.096 af
Outflow =	0.06 cfs @ 15.35 hrs, Volume=	0.085 af, Atten= 96%, Lag= 195.3 min
Discarded =	0.06 cfs @ 15.35 hrs, Volume=	0.085 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.22' @ 15.35 hrs Surf.Area= 0.046 ac Storage= 0.053 af

Plug-Flow detention time= 393.8 min calculated for 0.085 af (88% of inflow) Center-of-Mass det. time= 340.4 min (1,151.6 - 811.2)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.056 af	28.78'W x 69.33'L x 5.00'H Prismatoid
			0.229 af Overall - 0.090 af Embedded = 0.139 af x 40.0% Voids
#2	96.00'	0.090 af	Cultec R-902HD x 60 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 10 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.146 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	95.50'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.06 cfs @ 15.35 hrs HW=97.22' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.06 cfs)

## Summary for Pond 176P: CB 6

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 3.25" for cornell 010 event
Inflow =	1.33 cfs @ 12.09 hrs, Volume=	0.096 af
Outflow =	1.33 cfs @ 12.09 hrs, Volume=	0.096 af, Atten= 0%, Lag= 0.0 min
Primary =	1.33 cfs @12.09 hrs, Volume=	0.096 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 98.11' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	97.50'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.31 cfs @ 12.09 hrs HW=98.10' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.31 cfs @ 2.64 fps)

## Summary for Pond 177P: CB 11

Inflow Area	=	0.038 ac,100.00% Impervious, Inflow Depth = 4.74" for cor	nell 010 event
Inflow	=	0.18 cfs @ 12.08 hrs, Volume= 0.015 af	
Outflow	=	0.18 cfs @ 12.08 hrs, Volume= 0.015 af, Atten= 0%,	Lag= 0.0 min
Primary	=	0.18 cfs @ 12.08 hrs, Volume= 0.015 af	-

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 85.00' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.18 cfs @ 12.08 hrs HW=85.00' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.18 cfs @ 1.54 fps)

## Summary for Pond 178P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 14.12 hrs, Volume=	0.018 af, Atten= 95%, Lag= 122.3 min
Discarded =	0.01 cfs @ 14.12 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.28' @ 14.12 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 324.5 min calculated for 0.018 af (97% of inflow) Center-of-Mass det. time= 307.0 min (1,055.1 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1	Discarded	95.50'	1.020 in/hr Exfiltration over Wetted area
----	-----------	--------	-------------------------------------------

Discarded OutFlow Max=0.01 cfs @ 14.12 hrs HW=97.28' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

### Summary for Pond 182P: CB 12

Inflow Area	=	0.241 ac, 63.01% Impervious, Inflow	w Depth = 3.75" for cornell 010 event
Inflow =	=	1.02 cfs @ 12.09 hrs, Volume=	0.075 af
Outflow =	=	1.02 cfs @ 12.09 hrs, Volume=	0.075 af, Atten= 0%, Lag= 0.0 min
Primary =	=	1.02 cfs @ 12.09 hrs, Volume=	0.075 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.57' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.00 cfs @ 12.09 hrs HW=79.57' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.00 cfs @ 2.45 fps)

#### Summary for Pond 185P: CB 13

Inflow Area =	0.105 ac, 67.31% Impervious, Inflow I	Depth = 3.86" for cornell 010 event
Inflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af
Outflow =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af, Atten= 0%, Lag= 0.0 min
Primary =	0.45 cfs @ 12.09 hrs, Volume=	0.034 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.38' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.45 cfs @ 12.09 hrs HW=79.38' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.45 cfs @ 1.96 fps)

## Summary for Pond 190P: CHAMBERS UNIT 4

Inflow Area =	4.924 ac, 21.44% Impervious, Inflow De	epth = 2.69" for cornell 010 event
Inflow =	8.36 cfs @ 12.33 hrs, Volume=	1.104 af
Outflow =	8.31 cfs @ 12.36 hrs, Volume=	1.053 af, Atten= 1%, Lag= 1.7 min
Discarded =	0.06 cfs @ 12.36 hrs, Volume=	0.091 af
Primary =	8.26 cfs @ 12.36 hrs, Volume=	0.963 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.69' @ 12.36 hrs Surf.Area= 0.039 ac Storage= 0.102 af

Plug-Flow detention time= 56.5 min calculated for 1.053 af (95% of inflow) Center-of-Mass det. time= 31.2 min (869.4 - 838.2) oldoakenbucket2t

 Type III 24-hr cornell 010 Rainfall=4.98"

 Printed 12/12/2022

 LC
 Page 81

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	76.00'	0.045 af	24.50'W x 69.00'L x 5.00'H Prismatoid
			0.194 af Overall - 0.082 af Embedded = 0.112 af x 40.0% Voids
#2	76.50'	0.082 af	Cultec R-902HD x 55 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			5 Rows of 11 Chambers
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf
		0.127 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	76.00' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
#2	Primary	78.40' <b>24</b> .	.0" Vert. Orifice/Grate C= 0.600

**Discarded OutFlow** Max=0.06 cfs @ 12.36 hrs HW=79.69' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=8.25 cfs @ 12.36 hrs HW=79.69' (Free Discharge) ←2=Orifice/Grate (Orifice Controls 8.25 cfs @ 3.86 fps)

## Summary for Pond 193P: CHAMBERS UNIT 3

Inflow Area =	0.672 ac, 61.75% Impervious, Inflow De	epth = 3.75" for cornell 010 event
Inflow =	2.48 cfs @ 12.11 hrs, Volume=	0.210 af
Outflow =	0.15 cfs @ 14.23 hrs, Volume=	0.137 af, Atten= 94%, Lag= 127.3 min
Discarded =	0.07 cfs @ 14.23 hrs, Volume=	0.121 af
Primary =	0.08 cfs @ 14.23 hrs, Volume=	0.016 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 90.15' @ 14.23 hrs Surf.Area= 0.057 ac Storage= 0.123 af

Plug-Flow detention time= 388.7 min calculated for 0.137 af (65% of inflow) Center-of-Mass det. time= 289.5 min (1,085.0 - 795.5)

Volume	Invert	Avail.Storage	Storage Description
#1	87.10'	0.066 af	43.00'W x 57.30'L x 5.00'H Prismatoid
			0.283 af Overall - 0.117 af Embedded = 0.166 af x 40.0% Voids
#2	87.60'	0.117 af	Cultec R-902HD x 78 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 13 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.183 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	87.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
#2	Primary	90.00' <b>8.0</b>	)" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.07 cfs @ 14.23 hrs HW=90.15' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.08 cfs @ 14.23 hrs HW=90.15' (Free Discharge) [↑] 2=Orifice/Grate (Orifice Controls 0.08 cfs @ 1.33 fps)

#### Summary for Pond 197P: unit6

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 101.23' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1	Discarded	00 10'	1.020 in/hr Exfiltration over Wetted area
#1	Discarueu	99.10	1.020 m/m Eximutation over wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=101.23' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 198P: unit8

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.64 hrs, Volume=	0.018 af, Atten= 94%, Lag= 93.4 min
Discarded =	0.01 cfs @ 13.64 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 95.72' @ 13.64 hrs Surf.Area= 0.009 ac Storage= 0.008 af

Plug-Flow detention time= 228.4 min calculated for 0.018 af (100% of inflow) Center-of-Mass det. time= 228.3 min (976.4 - 748.1) oldoakenbucket2t Prepared by ANTHONY A ESPOSITO 
 Type III 24-hr cornell 010 Rainfall=4.98"

 Printed 12/12/2022

 LC
 Page 83

HydroCAD® 10.00-13 s/n 01291 © 2014 H	lydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description	
#1	94.10'	0.013 af	8.50'W x 47.10'L x 4.50'H Prismatoid	
			0.041 af Overall - 0.010 af Embedded = 0.032 af x 40.0% Voids	
#2	94.60'	0.010 af	Cultec R-902HD x 6 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.022 af	Total Available Storage	
			-	
Device	Routing	Invert Ou	tlet Devices	
#1	Discarded	94.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area	
Discarde Η1=Exf	ed OutFlow	Max=0.01 cfs @ filtration Controls	13.64 hrs HW=95.72' (Free Discharge) s 0.01 cfs)	
		S	ummary for Pond 202P: unit9	
Infla 0 -		046 100 00%	Imperieure Inflow Denth - 4.74" fer eenall 010 event	
Inflow Ar Inflow			Impervious, Inflow Depth = 4.74" for cornell 010 event hrs. Volume= 0.018 af	
Outflow		.01 cfs @ 13.96		
Discarde		.01 cfs @ 13.96		
Discarde	- U			
Routing I	Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs			
			Area= 0.007 ac Storage= 0.009 af	
Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow)				
	Center-of-Mass det. time= 302.4 min ( 1,050.5 - 748.1 )			
Jointon O				

Volume	Invert	Avail.Storage	Storage Description
#1	90.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	91.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	90.60'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 13.96 hrs HW=92.73' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

# Summary for Pond 204P: unit10

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.73' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	89.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	90.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	89.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=91.73' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

## Summary for Pond 206P: unit11

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 94.93' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	92.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	93.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Discarded	92.80' 1.0	020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=94.93' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

### Summary for Pond 209P: unit12

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 95.63' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	93.50'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	94.00'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 93.50' 1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=95.63' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

## Summary for Pond 219P: unit13

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @_ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 93.93' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description	
#1	91.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids	
#2	92.30'	0.010 af	Cultec R-902HD x 6 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.018 af	Total Available Storage	

#### oldoakenbucket2t

 Type III 24-hr cornell 010 Rainfall=4.98"

 Printed 12/12/2022

 LC
 Page 86

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	91.80'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=93.93' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 222P: unit14

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 89.13' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	87.00'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	87.50'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	87.00'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 13.96 hrs HW=89.13' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 230P: unit15

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 89.13' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1) oldoakenbucket2t Prepared by ANTHONY A. ESPOSITO

Type III 24-hr cornell 010 Rainfall=4.98" Printed 12/12/2022 HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC Page 87

	Invert	Avail.Storage	Storage Description		
#1	87.00'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid		
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids		
#2	87.50'	0.010 af	Cultec R-902HD x 6 Inside #1		
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf		
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap		
			6 Rows of 1 Chambers		
	Cap Storage= $+2.8$ cf x 2 x 6 rows = 33.1 cf				
		0.018 af	Total Available Storage		
Device	Routing	Invert Ou	tlet Devices		
#1	Discarded	87.00' <b>1.0</b>	20 in/hr Exfiltration over Wetted area		
Discarde	d OutFlow 1	√ax=0.01 cfs @ ⁻	13.96 hrs HW=89.13' (Free Discharge)		
└─1=Exf	iltration (Exf	iltration Controls	; 0.01 cfs)		
		Su	Immary for Pond 231P: unit16		
nflow Ar	ea = 0.	046 ac.100.00%	Impervious, Inflow Depth = 4.74" for cornell 010 event		
nflow		22 cfs @ 12.08			
Dutflow		01 cfs @ 13.96			
Discarde	scarded = 0.01 cfs @ 13.96 hrs, Volume= 0.018 af				
		•			
			n= 0.00-29.00 hrs, dt= 0.04 hrs		
Peak Fle	v= 83.73' @ 1	13.96 hrs Surf.A	Area= 0.007 ac Storage= 0.009 af		
	v detention ti	me= 306 0 min c	alculated for 0.018 af (99% of inflow)		
Plug-Flov			calculated for 0.018 af (99% of inflow) 〔1.050.5 - 748.1 〕		
Plug-Flov			calculated for 0.018 af (99% of inflow) ( 1,050.5 - 748.1 )		
Plug-Flov Center-o		me= 302.4 min (	(1,050.5 - 748.1)		
Plug-Flov Center-o Volume	f-Mass det. ti Invert	me= 302.4 min ( Avail.Storage	(1,050.5 - 748.1 ) Storage Description		
Plug-Flov Center-o	f-Mass det. ti	me= 302.4 min ( Avail.Storage	(1,050.5 - 748.1 ) <u>Storage Description</u> <b>7.10'W x 42.00'L x 4.50'H Prismatoid</b>		
Plug-Flov Center-o Volume	f-Mass det. ti Invert	me= 302.4 min ( <u>Avail.Storage</u> 0.008 af	(1,050.5 - 748.1 ) Storage Description		
Plug-Flov Center-o <u>/olume</u> #1	f-Mass det. ti Invert 81.60'	me= 302.4 min ( <u>Avail.Storage</u> 0.008 af	1,050.5 - 748.1 )         Storage Description         7.10'W x 42.00'L x 4.50'H Prismatoid         0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids         Cultec R-902HD x 6 Inside #1		
Plug-Flov Center-o <u>/olume</u> #1	f-Mass det. ti Invert 81.60'	me= 302.4 min ( <u>Avail.Storage</u> 0.008 af	<ul> <li>(1,050.5 - 748.1)</li> <li>Storage Description</li> <li>7.10'W x 42.00'L x 4.50'H Prismatoid</li> <li>0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids</li> <li>Cultec R-902HD x 6 Inside #1</li> <li>Effective Size= 69.8''W x 48.0''H =&gt; 17.65 sf x 3.67'L = 64.7 cf</li> </ul>		
Plug-Flov Center-o <u>/olume</u> #1	f-Mass det. ti Invert 81.60'	me= 302.4 min ( <u>Avail.Storage</u> 0.008 af	(1,050.5 - 748.1 ) Storage Description 7.10'W x 42.00'L x 4.50'H Prismatoid 0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids Cultec R-902HD x 6 Inside #1 Effective Size= 69.8''W x 48.0''H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0''W x 48.0''H x 4.10'L with 0.44' Overlap		
Plug-Flov Center-o <u>Volume</u> #1	f-Mass det. ti Invert 81.60'	me= 302.4 min ( <u>Avail.Storage</u> 0.008 af	(1,050.5 - 748.1 ) Storage Description 7.10'W x 42.00'L x 4.50'H Prismatoid 0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids Cultec R-902HD x 6 Inside #1 Effective Size= 69.8''W x 48.0''H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0''W x 48.0''H x 4.10'L with 0.44' Overlap 6 Rows of 1 Chambers		
Plug-Flov Center-o <u>Volume</u> #1	f-Mass det. ti Invert 81.60'	me= 302.4 min ( <u>Avail.Storage</u> 0.008 af	(1,050.5 - 748.1 ) Storage Description 7.10'W x 42.00'L x 4.50'H Prismatoid 0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids Cultec R-902HD x 6 Inside #1 Effective Size= 69.8''W x 48.0''H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0''W x 48.0''H x 4.10'L with 0.44' Overlap 6 Rows of 1 Chambers Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf		
Plug-Flov Center-o <u>Volume</u> #1	f-Mass det. ti Invert 81.60'	me= 302.4 min ( <u>Avail.Storage</u> 0.008 af 0.010 af 0.018 af	(1,050.5 - 748.1 ) Storage Description 7.10'W x 42.00'L x 4.50'H Prismatoid 0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids Cultec R-902HD x 6 Inside #1 Effective Size= 69.8''W x 48.0''H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0''W x 48.0''H x 4.10'L with 0.44' Overlap 6 Rows of 1 Chambers Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf		

**Discarded OutFlow** Max=0.01 cfs @ 13.96 hrs HW=83.73' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

# Summary for Pond 232P: unit17

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.93' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description	
#1	78.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids	
#2	79.30'	0.010 af	Cultec R-902HD x 6 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.018 af	Total Available Storage	
			2	

Device	Routing	Invert	Outlet Devices
#1	Discarded	78.80'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 13.96 hrs HW=80.93' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 233P: unit18

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 77.03' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	74.90'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	75.40'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	74.90' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=77.03' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

### Summary for Pond 240P: unit19

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 78.43' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	76.30'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	76.80'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 76.30' 1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 13.96 hrs HW=78.43' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 241P: unit20

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @_ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.23' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	77.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	77.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

#### oldoakenbucket2t

 Type III 24-hr cornell 010 Rainfall=4.98"

 Printed 12/12/2022

 LC
 Page 90

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	77.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=79.23' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 242P: unit21

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 82.23' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1)

Volume	Invert	Avail.Storage	Storage Description
#1	80.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	80.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	80.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.96 hrs HW=82.23' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

## Summary for Pond 243P: unit22

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af, Atten= 95%, Lag= 112.3 min
Discarded =	0.01 cfs @ 13.96 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 83.73' @ 13.96 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 306.0 min calculated for 0.018 af (99% of inflow) Center-of-Mass det. time= 302.4 min (1,050.5 - 748.1) oldoakenbucket2t

 Type III 24-hr cornell 010 Rainfall=4.98"

 Printed 12/12/2022

 LC
 Page 91

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert		Storage Description
#1	81.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
#0	00.40	0.040 - 6	0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	82.10'	0.010 af	Cultec R-902HD x 6 Inside #1 Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= $+2.8$ cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	81.60' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
		Max=0.01 cfs @ filtration Controls	13.96 hrs HW=83.73' (Free Discharge) s 0.01 cfs)
		Su	Immary for Pond 244P: unit23
Inflow A	rea = 0	046 ac 100 00%	Impervious, Inflow Depth = 4.74" for cornell 010 event
Inflow		22 cfs @ 12.08	
Outflow		01 cfs @ 13.96	
Discarde	ed = 0.0	01 cfs @ 13.96	hrs, Volume= 0.018 af
Routing	by Stor-Ind m	ethod, Time Spa	n= 0.00-29.00 hrs, dt= 0.04 hrs
			Area= 0.007 ac Storage= 0.009 af
Plua-Fla	ow detention ti	me= 306.0 min o	calculated for 0.018 af (99% of inflow)
			1,050.5 - 748.1 )
Volume	Invert	Avail Storage	Storage Description
#1	81.60'	0.008 af	
		ui	0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	82.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Con Storogon ±2.8 at v 2 v 6 rouge = 22.1 at
		0.018 af	Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf Total Available Storage

Device	Routing	Invert	Outlet Devices	
#1	Discarded	81.60'	1.020 in/hr Exfiltration over Wetted area	

**Discarded OutFlow** Max=0.01 cfs @ 13.96 hrs HW=83.73' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

# Summary for Pond 245P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	epth = 4.74" for cornell 010 event
Inflow =	0.22 cfs @ 12.08 hrs, Volume=	0.018 af
Outflow =	0.01 cfs @ 14.12 hrs, Volume=	0.018 af, Atten= 95%, Lag= 122.3 min
Discarded =	0.01 cfs @ 14.12 hrs, Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 99.78' @ 14.12 hrs Surf.Area= 0.007 ac Storage= 0.009 af

Plug-Flow detention time= 324.5 min calculated for 0.018 af (97% of inflow) Center-of-Mass det. time= 307.0 min (1,055.1 - 748.1)

Volume	Invert	Avail.Storage	Storage Description	
#1	98.00'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids	
#2	98.50'	0.016 af	Cultec R-902HD x 11 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf	
		0.022 af	Total Available Storage	
Davias	Douting	Invert Ou	tlet Devisee	

Device	Routing	mven	
#1	Discarded	98.00'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 14.12 hrs HW=99.78' (Free Discharge) ☐1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 246P: unit 1

Volume	Invert	Avail.Storage	e Storage Description		
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid		
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids		
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1		
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf		
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap		
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf		
		0.022 af	Total Available Storage		
Device	Routing	Invert Ou	tlet Devices		
#1	Discarded	95.50' <b>1.0</b>	20 in/hr Exfiltration over Wetted area		

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge) [↑] 1=Exfiltration (Controls 0.00 cfs)

#### Summary for Subcatchment 114S: TO CB 2

Runoff = 1.03 cfs @ 12.09 hrs, Volume= 0.076 af, Depth= 4.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

	Are	a (sf)	CN	Descriptio	n				
*		4,511	98	IMPERVIC	IMPERVIOUS				
		3,863	74	>75% Gra	ss cover, G	lood, HSG C			
	ł	8,374	87	Weighted	Weighted Average				
		3,863		46.13% Pe	46.13% Pervious Area				
	4	4,511		53.87% Impervious Area					
	Tc L	.ength	Slope	e Velocity	Capacity	Description			
_(	min)	(feet)	(ft/ft	) (ft/sec)	(cfs)				
	6.0					Direct Entry, tr55 min.			

#### Summary for Subcatchment 119S: TO CB 3

Runoff	=	0.57 cfs @	12.09 hrs,	Volume=	0.043 af, Depth= 5.19"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

	Area (sf)	CN	Description	n					
*	3,172	98	IMPERVIO	IMPERVIOUS					
	1,200	74	>75% Gras	>75% Grass cover, Good, HSG C					
	4,372	91	Weighted /	Weighted Average					
	1,200		27.45% Pe	27.45% Pervious Area					
	3,172		72.55% Impervious Area						
	Tc Length	Slop	e Velocity	Capacity	Description				
(m	nin) (feet)	(ft/f		(cfs)	Decemption				
	6.0	•	· · · ·	\$ <b>6</b>	Direct Entry, TR-55 MIN.				

### Summary for Subcatchment 153S: TO CB 4

Runoff = 0.99 cfs @ 12.18 hrs, Volume= 0.092 af, Depth= 4.75"

	Area (sf)	CN	Description			
*	5,335	98	IMPERVIOUS			
	4,754	74	>75% Grass cover, Good, HSG C			
	10,089	87	Weighted Average			
	4,754		47.12% Pervious Area			
	5,335		52.88% Impervious Area			

#### oldoakenbucket2t

 Type III 24-hr cornell 025 Rainfall=6.24"

 Printed 12/12/2022

 LC
 Page 94

Prepared by ANTHONY A. ESPOSITO	
HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC	2

	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·
	12.0	50	0.0800	0.07		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	1.1	188	0.0320	2.88		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	0.0	7	0.0200	2.87		Shallow Concentrated Flow, CD
						Paved Kv= 20.3 fps
	0.2	47	0.0300	3.52		Shallow Concentrated Flow, DE
_						Paved Kv= 20.3 fps
	13.3	292	Total			

### Summary for Subcatchment 155S: TO CB 5

Runoff	=	0.58 cfs @	12.09 hrs, Volume=	0.044 af, Depth= 5.19"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

Area (sf)	CN	Description	า					
3,072	98	IMPERVIO	IMPERVIOUS					
1,382	74	>75% Gras	>75% Grass cover, Good, HSG C					
4,454	91	Weighted <i>J</i>	Weighted Average					
1,382		31.03% Pervious Area						
3,072		68.97% lm	pervious A	rea				
		,	Capacity (cfs)	Description				
i.0				Direct Entry, tr-55 min				
	3,072 1,382 4,454 1,382 3,072 Tc Length	3,072 98 1,382 74 4,454 91 1,382 3,072 Tc Length Slope in) (feet) (ft/ft	3,072 98 IMPERVIO 1,382 74 >75% Gras 4,454 91 Weighted 1,382 31.03% Pe 3,072 68.97% Im Tc Length Slope Velocity in) (feet) (ft/ft) (ft/sec)	3,072 98 IMPERVIOUS 1,382 74 >75% Grass cover, G 4,454 91 Weighted Average 1,382 31.03% Pervious Are 3,072 68.97% Impervious A Tc Length Slope Velocity Capacity in) (feet) (ft/ft) (ft/sec) (cfs)				

# Summary for Subcatchment 166S: CB 6

Runoff = 1.79 cfs @ 12.09 hrs, Volume= 0.131 af, Depth= 4.42"

	Α	rea (sf)	CN	Description						
		8,834	74	>75% Gras	ss cover, G	Good, HSG C				
*		6,602	98	PAVEMEN	PAVEMENT, HSG C					
		15,436	84	Weighted Average						
		8,834		57.23% Pervious Area						
		6,602		42.77% Impervious Area						
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)					
	6.0					Direct Entry, tr-55 min				

#### Summary for Subcatchment 167S: TO CB 1

Runoff = 0.38 cfs @ 12.09 hrs, Volume= 0.030 af, Depth= 5.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

_	А	rea (sf)	CN	Description	า			
*		2,341	98	IMPERVIO	US			
		562	74	>75% Gras	ss cover, G	Bood, HSG C		
_		2,903	93	Weighted /	Average			
		562 19.36% Pervious Area						
2,341 80.64% Impervious Area						rea		
	Тс	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	5.1	50	0.0600	0.16		Sheet Flow,		
						Grass: Dense n= 0.240 P2= 3.37"		
	0.1	22	0.0600	3.94		Shallow Concentrated Flow, BC		
						Unpaved Kv= 16.1 fps		
	1.1	185	0.0200	2.87		Shallow Concentrated Flow, CD		
_						Paved Kv= 20.3 fps		
	6.3	257	Total					

### Summary for Subcatchment 169S: TO DCB 8

	Area (sf)	CN	Description
*	16,852	98	pavement
*	2,343	98	EXIST HSE
	97,544	74	>75% Grass cover, Good, HSG C
	54,320	70	Woods, Good, HSG C
*	183	98	WALL
	171,242	75	Weighted Average
	151,864		88.68% Pervious Area
	19,378		11.32% Impervious Area

#### oldoakenbucket2t

Prepared by ANTHONY A. ESPOSITO

48 0.0437

7 0.0200

550 0.0300

4.24

2.87

3.52

Type III 24-hr cornell 025 Rainfall=6.24" Printed 12/12/2022 HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC Page 96

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
20.9	50	0.0200	0.04		Sheet Flow, AB
					Woods: Dense underbrush n= 0.800 P2= 3.37"
1.7	298	0.0330	2.92		Shallow Concentrated Flow, BC
					Unpaved Kv= 16.1 fps
0.7	136	0.0440	3.38		Shallow Concentrated Flow, CD
					Unpaved Kv= 16.1 fps

26.1	1 089	Total	
20.1	1.000	rotar	

0.2

0.0

2.6

# Summary for Subcatchment 173S: TO CB 10

Shallow Concentrated Flow, DE

Shallow Concentrated Flow, EF

Shallow Concentrated Flow, FG

Paved Kv= 20.3 fps

Paved Kv= 20.3 fps

Paved Kv= 20.3 fps

Runoff = 0.84 cfs @ 12.09 hrs, Volume= 0.062 af, Depth= 4.64"	Runoff	=	0.84 cfs @	12.09 hrs,	Volume=	0.062 af, Depth= 4.64"
---------------------------------------------------------------	--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

	Area (sf)	CN	Description	n				
*	3,534	98	IMPERVIC	US				
	3,452	74	>75% Gra	ss cover, G	Bood, HSG C			
	6,986	86	Weighted	Average				
	3,452	49.41% Pervious Area						
	3,534	i34 50.59% Impervious Area						
	<b>-</b>	~		<b>•</b> •				
	Tc Length	Slop	,		Description			
(m	iin) (feet)	(ft/fl	:) (ft/sec)	(cfs)				
(	6.0				Direct Entry, TR55 MIN			
	Summary for Subcatchment 176S: TO CB 11							

Summary for Subcatchment 176S: TO CB 11

Runoff = 0.23 cfs @ 12.08 hrs, Volume= 0.019 af, Depth= 6.00"

	Ai	ea (sf)	CN	Description	n	
*		1,635	98	<b>IMPERVIO</b>	US	
		1,635		100.00% lr	mpervious <i>i</i>	Area
	Тс	Length	Slope	Velocity	Capacity	Description
(r	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.0					Direct Entry, tr-55 min

#### Summary for Subcatchment 181S: TO CB 12

Runoff = 1.33 cfs @ 12.09 hrs, Volume= 0.100 af, Depth= 4.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

	Area (sf)	CN	Description	า	
*	6,607	98	IMPERVIO	US	
	3,879	74	>75% Gras	ss cover, G	ood, HSG C
	10,486	89	Weighted /	Average	
	3,879		36.99% Pe	ervious Area	a
	6,607		63.01% lm	pervious A	rea
	Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
	6.0		///_		Direct Entry, TR 55 MIN
			_		

#### Summary for Subcatchment 184S: TO CB 13

Runoff	=	0.59 cfs @	12.09 hrs, Volume=	0.044 af, Depth= 5.08"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

	Area (sf)	CN	Description						
*	3,082	98	IMPERVIOUS						
	1,497	74	>75% Grass cover, Good, HSG C						
	4,579	90	Weighted Average						
	1,497		32.69% Pervious Area						
	3,082		67.31% Impervious Area						
(n	Tc Length nin) (feet)	Slop (ft/f							
	6.0		Direct Entry, TR 55 MIN						
	Summary for Subcatchment 193S: EXIST TO WETLANDS								

Runoff = 25.20 cfs @ 12.28 hrs, Volume= 2.684 af, Depth= 3.19"

oldoakenbucket2t

 Type III 24-hr cornell 025 Rainfall=6.24"

 Printed 12/12/2022

 LC
 Page 98

Prepared by ANTHONY A.	ESPOSITO	'
HydroCAD® 10.00-13 s/n 01291	© 2014 HydroCAD Software Solutions LLC	

	Ai	rea (sf)	CN	Description	า	
	3	21,168	70	Woods, Go	ood, HSG (	
*		8,364	98	ROOF, HS	GC	
*		436	98	CONCRET	E, HSG C	
		9,975	96	Gravel sur	face, HSG	C
		44,126	74	>75% Gras	ss cover, G	ood, HSG C
*		10,759	98	PAVEMEN	T, HSG C	
		44,910	65	Brush, Goo	od, HSG C	
	4	39,738	72	Weighted /	Average	
	4	20,179		95.55% Pe	rvious Area	a
		19,559		4.45% Imp	ervious Are	a
	Тс	Length	Slope	• Velocity	Capacity	Description
(n	nin)	(feet)	(ft/ft)	) (ft/sec)	(cfs)	
1	17.8	50	0.0300	0.05		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	2.5	524	0.0458	3.45		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
2	20.3	574	Total			

## Summary for Subcatchment 194S: PROP TO WETS

Runoff = 13.30 cfs @ 12.16 hrs, Volume=

1.130 af, Depth= 3.29"

	Ar	ea (sf)	CN	Descriptio	า	
	1	62,378	70	Woods, Go	ood, HSG (	0
	1	11,644	74	>75% Gras	ss cover, G	Bood, HSG C
*		1,394	98	WALLS, H	SG C	
		479	96	Gravel sur	face, HSG	В
*		3,703	98	PAVEMEN	<u>T</u>	
	1	79,598	73	Weighted <i>i</i>	Average	
	1	74,501		97.16% Pe	rvious Area	a
		5,097		2.84% Imp	ervious Are	ea
	Тс	Length	Slope		Capacity	Description
<u> </u>	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.0	50	0.0200	0.10		Sheet Flow, AB
						Grass: Dense n= 0.240 P2= 3.37"
I	0.5	68	0.0200	2.28		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
I	0.1	24	0.0200	2.87		Shallow Concentrated Flow, CD
						Paved Kv= 20.3 fps
	2.6	532	0.0450	3.42		Shallow Concentrated Flow, DE
						Unpaved Kv= 16.1 fps
1	1.2	674	Total			

#### Summary for Subcatchment 195S: roof unit2

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

Area	(sf)	CN [	Descriptior	า				
1	992	98 F	98 Roofs, HSG A					
1	992	100.00% Impervious Area						
(min)	ngth feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, tr-55 min			

## Summary for Subcatchment 196S: roof unit3

Runoff	=	0.28 cfs @	12.08 hrs, Volume=	0.023 af, Depth= 6.00"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

A	rea (sf)	CN	Description	า						
	1,992	98	98 Roofs, HSG A							
	1,992		100.00% Impervious Area							
Tc _(min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description					
6.0					Direct Entry, tr-55 min					
	Summary for Subcatchment 200S: roof unit8									

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Area (sf)	CN	Descriptio	n					
1,992	98	98 Roofs, HSG A						
1,992		100.00% lr	mpervious /	Area				
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description				
6.0				Direct Entry, tr-55 min				

#### Summary for Subcatchment 201S: roof uniT9

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

A	rea (sf)	CN	Description	n			
	1,992	98	98 Roofs, HSG A				
	1,992		100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry, tr-55 min		

### Summary for Subcatchment 203S: roof uniT10

Runoff	=	0.28 cfs @	12.08 hrs, '	Volume=	0.023 af, Depth= 6.00"
--------	---	------------	--------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

A	rea (sf)	CN	Description	า						
	1,992	98	98 Roofs, HSG A							
	1,992		100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)						
6.0					Direct Entry, tr-55 min					
	Summary for Subcatchment 205S: roof uniT11									

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Area (sf)	CN	Description	n					
1,992	98	98 Roofs, HSG A						
1,992		100.00% lr	mpervious /	Area				
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description				
6.0				Direct Entry, tr-55 min				

#### Summary for Subcatchment 206S: TO DCB 9

Runoff = 2.17 cfs @ 12.13 hrs, Volume= 0.182 af, Depth= 4.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

_	А	rea (sf)	CN	Descriptio	า	
*		11,762	98	pavement		
		7,805	74	>75% Gras	ss cover, G	ood, HSG C
_		19,567	88	Weighted /	Average	
		7,805		39.8 <mark>9</mark> % Pe	rvious Area	a
		11,762		60.11% lm	pervious A	rea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.0	50	0.0200	0.10		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.37"
	0.1	11	0.0200	2.28		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	0.0	7	0.0200	2.87		Shallow Concentrated Flow, CD
						Paved Kv= 20.3 fps
	1.6	333	0.0300	3.52		Shallow Concentrated Flow, DE
_						Paved Kv= 20.3 fps
	9.7	401	Total			

Summary for Subcatchment 207S: roof unit4

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

Area (sf)	CN	Description	า				
1,992	98	Roofs, HS	GA				
1,992		100.00% Impervious Area					
Tc Length (min) (feet) 6.0	Slop (ft/f		Capacity (cfs)	Description Direct Entry, tr-55 min			
0.0				Direct Entry, a-55 min			

#### Summary for Subcatchment 208S: roof uniT12

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Type III 24-hr corr

Type III 24-hr cornell 025 Rainfall=6.24"Printed12/12/2022Software Solutions LLCPage 102

 Prepared by ANTHONY A. ESPOSITO
 Prepared by ANTHONY A. ESPOSITO

 HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC
 Prepared by ANTHONY A. ESPOSITO

 Area (sf)
 CN
 Description

oldoakenbucket2t

1,992	98 Roofs, HSG A									
1,992	100.00% Impervious Area									
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)									
6.0	Direct Entry, tr-55 min									
	Summary for Subcatchment 218S: roof uniT13									
Runoff =	0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"									
-	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24" Area (sf) CN Description									
1,992	98 Roofs, HSG A									
1,992	100.00% Impervious Area									
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)									
6.0	Direct Entry, tr-55 min									
	Summary for Subcatchment 220S: roof unit5									
Runoff =	0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"									

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

Ar	ea (sf)	CN	Descriptio	า	
	1,992	98	Roofs, HS	GA	
	1,992		100.00% Ir	npervious <i>i</i>	Area
Tc <u>(min)</u> 6.0	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description Direct Entry, tr-55 min
0.0					

## Summary for Subcatchment 221S: roof uniT14

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

 Area (sf)	CN	Description
1,992	98	Roofs, HSG A
1,992		100.00% Impervious Area

oldoakenbucket2t Type III 24-hr cornell 025 Rainfall=6.24"						
Prepared by ANTHONY A. ESPOSITOPrinted 12/12/2022HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLCPage 103						
Tc Length Slope Velocity Capacity Description						
(min)       (feet)       (ft/sec)       (cfs)         6.0       Direct Entry, tr-55 min						
Summary for Subcatchment 223S: roof unit6						
Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 025 Rainfall=6.24"						
Area (sf) CN Description						
1,992 98 Roofs, HSG A						
1,992 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry, tr-55 min						
Summary for Subcatchment 224S: roof unit1						
Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 025 Rainfall=6.24"						
Area (sf) CN Description						
1,992 98 Roofs, HSG A						
1,992 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description _ (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry, tr-55 min						
Summary for Subcatchment 225S: roof unit7						
Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 025 Rainfall=6.24"						
Area (sf) CN Description						
1,992 98 Roofs, HSG A						
1,992 100.00% Impervious Area						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0     Direct Entry, tr-55 min						

#### Summary for Subcatchment 226S: roof uniT15

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lı	mpervious .	Area
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

## Summary for Subcatchment 227S: roof uniT16

Runoff	=	0.28 cfs @	12.08 hrs,	Volume=	0.023 af, Depth= 6.00"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

Area (sf)	CN	Description	า				
1,992	98	Roofs, HS	GA				
1,992		100.00% Ir	npervious <i>i</i>	Area			
Tc Length (min) (feet)		Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
6.0				Direct Entry, tr-55 min			
Summary for Subcatchment 228S: roof uniT17							

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	GA	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 229S: roof uniT18

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lı	mpervious.	Area
Tc (min) 6.0	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description Direct Entry, tr-55 min
0.0					

### Summary for Subcatchment 234S: roof uniT19

Runoff	=	0.28 cfs @	12.08 hrs, Volume=	0.023 af, Depth= 6.00"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

Ar	ea (sf)	CN	Description	n						
	1,992	98	Roofs, HS	G A						
	1,992		100.00% Impervious Area							
Tc (min)	Length (feet)		Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
6.0					Direct Entry, tr-55 min					
	Summary for Subcatchment 235S: roof uniT20									

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	GA	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 236S: roof uniT21

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lr	npervious .	Area
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

### Summary for Subcatchment 237S: roof uniT22

Runoff	=	0.28 cfs @	12.08 hrs,	Volume=	0.023 af, Depth= 6.00"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

A	rea (sf)	CN	Description	า				
	1,992	98	Roofs, HS	G A				
	1,992	,992 100.00% Impervious Area						
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description			
6.0	6.0 Direct Entry, tr-55 min							
	Summary for Subcatchment 238S: roof uniT23							

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

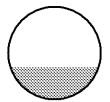
Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	GA	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 239S: roof uniT24

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.023 af, Depth= 6.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 025 Rainfall=6.24"

Area (sf)	CN Description
1,992	98 Roofs, HSG A
1,992	100.00% Impervious Area
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry, tr-55 min


### Summary for Reach 118R: CB 2 TO DMH 1

Inflow Area =	0.192 ac, 53.87% Impervious, Inflow D	epth = 4.75" for cornell 025 event
Inflow =	1.03 cfs @ 12.09 hrs, Volume=	0.076 af
Outflow =	1.03 cfs @ 12.09 hrs, Volume=	0.076 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.16 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 0.1 min

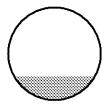
Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'



## Summary for Reach 150R: CB 3 TO DMH 1

 Inflow Area =
 0.100 ac, 72.55% Impervious, Inflow Depth =
 5.19" for cornell 025 event


 Inflow =
 0.57 cfs @
 12.09 hrs, Volume=
 0.043 af

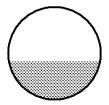
 Outflow =
 0.57 cfs @
 12.09 hrs, Volume=
 0.043 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.53 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'




## Summary for Reach 151R: DMH 1 TO DMH 2

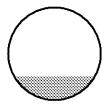
Inflow Area =	0.293 ac, 60.28% Impervious, Inflow D	Depth = 4.90" for cornell 025 event
Inflow =	1.60 cfs @ 12.09 hrs, Volume=	0.119 af
Outflow =	1.59 cfs @ 12.09 hrs, Volume=	0.119 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.12 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.66 fps, Avg. Travel Time= 1.4 min

Peak Storage= 43 cf @ 12.09 hrs Average Depth at Peak Storage= 0.42' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.37 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 138.0' Slope= 0.0151 '/' Inlet Invert= 95.68', Outlet Invert= 93.60'




## Summary for Reach 157R: CB 5 TO DMH 3

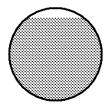
Inflow Area	a =	0.102 ac, 6	8.97% Impe	ervious,	Inflow Depth	= 5.19"	for cornell 025 event
Inflow	=	0.58 cfs @	12.09 hrs,	Volume	e 0.0	44 af	
Outflow	=	0.58 cfs @	12.09 hrs,	Volume	= 0.0	44 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.64 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'




## Summary for Reach 158R: DMH 3 TO HYDRO2

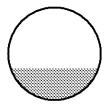
Inflow Area =	0.626 ac, 58.96% Impervious, Inflow D	Depth = 4.89" for cornell 025 event
Inflow =	2.97 cfs @ 12.11 hrs, Volume=	0.255 af
Outflow =	2.97 cfs @ 12.11 hrs, Volume=	0.255 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.05 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.50 fps, Avg. Travel Time= 0.4 min

Peak Storage= 29 cf @ 12.11 hrs Average Depth at Peak Storage= 0.89' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.79 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 39.0' Slope= 0.0062 '/' Inlet Invert= 90.39', Outlet Invert= 90.15'




## Summary for Reach 160R: CB 4 TO DMH 3

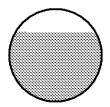
Inflow Area	=	0.232 ac, 5	52.88% Impe	ervious,	Inflow Depth	= 4.75"	for cornell 025 event
Inflow	=	0.99 cfs @	12.18 hrs,	Volume	).0 =	)92 af	
Outflow	=	0.99 cfs @	12.18 hrs,	Volume	e= 0.0	092 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.22 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.49 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.18 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'




## Summary for Reach 164R: HYDRO2 BASIN 3

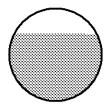
Inflow Area =	0.626 ac, 58.96% Impervious, Inflow I	Depth = 4.89" for cornell 025 event	
Inflow =	2.97 cfs @ 12.11 hrs, Volume=	0.255 af	
Outflow =	2.97 cfs @ 12.11 hrs, Volume=	0.255 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.69 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 0.1 min

Peak Storage= 4 cf @ 12.11 hrs Average Depth at Peak Storage= 0.75' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.25 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 6.0' Slope= 0.0083 '/' Inlet Invert= 90.05', Outlet Invert= 90.00'




## Summary for Reach 168R: DCB 8 TO DMH 4

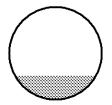
Inflow Area =	3.931 ac, 11.32% Impervious, Inflow	Depth = 3.49"	for cornell 025 event
Inflow =	9.65 cfs @ 12.36 hrs, Volume=	1.142 af	
Outflow =	9.65 cfs @ 12.36 hrs, Volume=	1.142 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 7.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.95 fps, Avg. Travel Time= 0.1 min

Peak Storage= 15 cf @ 12.36 hrs Average Depth at Peak Storage= 1.09' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.97 cfs

18.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0109 '/' Inlet Invert= 79.77', Outlet Invert= 79.65'




## Summary for Reach 169R: CB 1 TO HYDRO 1

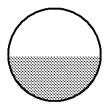
Inflow Area =	0.067 ac,	80.64% Impervious,	Inflow Depth = 5.4	42" for cornell 025 event
Inflow =	0.38 cfs @	) 12.09 hrs, Volume	e 0.030 af	
Outflow =	0.38 cfs @	) 12.09 hrs, Volume	e= 0.030 af,	Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.31 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.76 fps, Avg. Travel Time= 0.5 min

Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 24.0' Slope= 0.0050 '/' Inlet Invert= 102.27', Outlet Invert= 102.15'




# Summary for Reach 171R: DCB 9 TO DMH 4

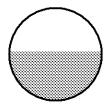
Inflow Are	a =	0.449 ac, 60.11% Impervious, Inflow	Depth = 4.86"	for cornell 025 event
Inflow	=	2.17 cfs @ 12.13 hrs, Volume=	0.182 af	
Outflow	=	2.17 cfs @ 12.13 hrs, Volume=	0.182 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.82 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.02 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.13 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.66 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 7.0' Slope= 0.0171 '/' Inlet Invert= 80.27', Outlet Invert= 80.15'




## Summary for Reach 172R: DMH 4 HYDRO3

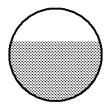
Inflow Area =	4.380 ac, 16.32% Impervious, Inflo	w Depth = 3.63"	for cornell 025 event
Inflow =	10.70 cfs @ 12.34 hrs, Volume=	1.324 af	
Outflow =	10.70 cfs @ 12.35 hrs, Volume=	1.324 af, Att	en= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.26 fps, Avg. Travel Time= 0.4 min

Peak Storage= 86 cf @ 12.35 hrs Average Depth at Peak Storage= 1.08' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 18.93 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 50.0' Slope= 0.0070 '/' Inlet Invert= 79.05', Outlet Invert= 78.70'




# Summary for Reach 173R: CB 6 TO HYDRO 4

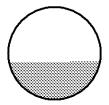
Inflow Area =	0.354 ac, 42.77% Impervious, Inflow	Depth = $4.42$ "	for cornell 025 event
Inflow =	1.79 cfs @ 12.09 hrs, Volume=	0.131 af	
Outflow =	1.79 cfs @ 12.09 hrs, Volume=	0.131 af, Atte	en= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.32 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 0.6 min

Peak Storage= 24 cf @ 12.09 hrs Average Depth at Peak Storage= 0.65' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.38 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 45.0' Slope= 0.0044 '/' Inlet Invert= 97.50', Outlet Invert= 97.30'




## Summary for Reach 174R: HYDRO 4 TO CHAMBERS 2

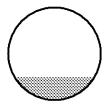
Inflow Area	=	0.354 ac, 42.77	% Impervious, Inflow D	epth = 4.42"	for cornell 025 event
Inflow	=	1.79 cfs @ 12.0	)9 hrs, Volume=	0.131 af	
Outflow	=	1.79 cfs @ 12.0	)9 hrs, Volume=	0.131 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.86 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.99 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 97.30', Outlet Invert= 97.20'




# Summary for Reach 175R: CB 10 TO DMH 7

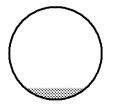
Inflow Area =	0.160 ac, 50	0.59% Impervious,	Inflow Depth =	4.64" for	cornell 025 event
Inflow =	0.84 cfs @	12.09 hrs, Volume	e= 0.062 a	af	
Outflow =	0.84 cfs @	12.09 hrs, Volume	e= 0.062 a	af, Atten=	0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.59 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.85 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'




## Summary for Reach 178R: CB 11 TO DMH 7

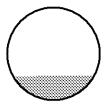
Inflow Area	=	0.038 ac,10	0.00% Imp	ervious,	Inflow De	epth =	6.00"	for co	rnell 025 event
Inflow	=	0.23 cfs @	12.08 hrs,	Volume	)=	0.019	af		
Outflow :	=	0.23 cfs @	12.08 hrs,	Volume	) <b>=</b>	0.019	af, Atte	ə <b>n= 0</b> %	,Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.80 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.26 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.08 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'




## Summary for Reach 179R: DMH 7 TO DMH 6

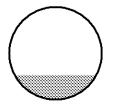
Inflow Area	a =	0.198 ac, 59.96% Impervious, Inflow Depth = 4.90" for cornell 025 event	
Inflow	=	1.07 cfs @ 12.09 hrs, Volume= 0.081 af	
Outflow	=	1.07 cfs @ 12.09 hrs, Volume= 0.081 af, Atten= 0%, Lag= 0.2 min	

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.51 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.99 fps, Avg. Travel Time= 0.8 min

Peak Storage= 15 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 93.0' Slope= 0.0400 '/' Inlet Invert= 84.25', Outlet Invert= 80.53'




## Summary for Reach 181R: HYDRO 1 TO CHAMB 1

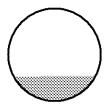
Inflow Area =	0.067 ac, 80.64% Impervious, Inflow D	Depth = 5.42" for cornell 025 event
Inflow =	0.38 cfs @ 12.09 hrs, Volume=	0.030 af
Outflow =	0.38 cfs @ 12.09 hrs, Volume=	0.030 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.73 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.40 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0045 '/' Inlet Invert= 102.05', Outlet Invert= 102.00'




# Summary for Reach 182R: HYDRO 3 TO CHAMBERS 3

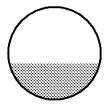
Inflow Area =	4.578 a	, 18.21% Impervious,	Inflow Depth = 3.6	68" for cornell 025 event
Inflow =	11.10 cfs	@ 12.34 hrs, Volum	e= 1.405 af	
Outflow =	11.10 cfs	@ 12.34 hrs, Volum	e= 1.405 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 15.92 fps, Min. Travel Time= 0.0 min Avg. Velocity = 5.24 fps, Avg. Travel Time= 0.0 min

Peak Storage= 3 cf @ 12.34 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 67.87 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0900 '/' Inlet Invert= 78.95', Outlet Invert= 78.50'




## Summary for Reach 183R: CB 12 TO DMH 5

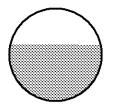
Inflow Area	=	0.241 ac, 6	63.01% Imp	ervious,	Inflow Depth	= 4.97	" for cornell 025 event
Inflow =	=	1.33 cfs @	12.09 hrs,	Volume	e 0.1	00 af	
Outflow =	=	1.33 cfs @	12.09 hrs,	Volume	e= 0.1	00 af, <i>A</i>	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.67 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.55 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.11 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 12.0' Slope= 0.0133 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'




## Summary for Reach 184R: HYDRO5 BASIN 4

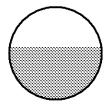
Inflow Area	a =	0.346 ac, 64.31% Impervious, Inflow	Depth = 5.00"	for cornell 025 event
Inflow	=	1.92 cfs @ 12.09 hrs, Volume=	0.144 af	
Outflow	=	1.92 cfs @ 12.09 hrs, Volume=	0.144 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.79 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.29 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.61' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.76 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0060 '/' Inlet Invert= 78.53', Outlet Invert= 78.50'




## Summary for Reach 185R: DMH 6 TO HYDRO 3

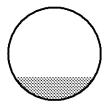
Inflow Area =	0.198 ac, 59.96% Impervious, Inflow D	Depth = 4.90" for cornell 025 event
Inflow =	1.07 cfs @ 12.09 hrs, Volume=	0.081 af
Outflow =	1.07 cfs @ 12.09 hrs, Volume=	0.081 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.26 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.72 fps, Avg. Travel Time= 0.8 min

Peak Storage= 17 cf @ 12.09 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.68 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 36.0' Slope= 0.0022 '/' Inlet Invert= 79.33', Outlet Invert= 79.25'




## Summary for Reach 186R: CB 13 TO DMH 5

Inflow Area	=	0.105 ac, 6	67.31% Imp	ervious,	Inflow Dep	oth = 5	.08" 1	for cornell 025 even	nt
Inflow	=	0.59 cfs @	12.09 hrs,	Volume	)= C	).044 af			
Outflow	=	0.59 cfs @	12.09 hrs,	Volume	)= C	).044 af	, Atter	n= 0%, Lag= 0.0 mi	n

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.83 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.25 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.30 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0145 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'



## Summary for Reach 187R: DMH 5 TO HYDRO 5

Inflow Area =	0.346 ac, 64.31% Impervious, Inflow D	Depth = 5.00" for cornell 025 event
Inflow =	1.92 cfs @ 12.09 hrs, Volume=	0.144 af
Outflow =	1.92 cfs @ 12.09 hrs, Volume=	0.144 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.53 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 0.4 min

Peak Storage= 17 cf @ 12.09 hrs Average Depth at Peak Storage= 0.65' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 32.0' Slope= 0.0050 '/' Inlet Invert= 78.79', Outlet Invert= 78.63'



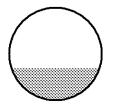
# Summary for Reach 195R: POST TO WETS

Inflow Area =	9.719 ac, 16.34% Impervious, Inflow	Depth = 3.22"	for cornell 025 event
Inflow =	23.44 cfs @ 12.17 hrs, Volume=	2.606 af	
Outflow =	23.44 cfs @ 12.17 hrs, Volume=	2.606 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

#### Summary for Reach 245R: DMH 2 TO DMH 3

 Inflow Area =
 0.293 ac, 60.28% Impervious, Inflow Depth =
 4.90"
 for cornell 025 event


 Inflow =
 1.59 cfs @
 12.09 hrs, Volume=
 0.119 af

 Outflow =
 1.59 cfs @
 12.10 hrs, Volume=
 0.119 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.47 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.09 fps, Avg. Travel Time= 0.8 min

Peak Storage= 25 cf @ 12.10 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.06 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 104.0' Slope= 0.0289 '/' Inlet Invert= 93.50', Outlet Invert= 90.49'



#### Summary for Pond 1P: unit 4

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.59 hrs, Volume=	0.020 af, Atten= 96%, Lag= 150.1 min
Discarded =	0.01 cfs @ 14.59 hrs, Volume=	0.020 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 98.43' @ 14.59 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 363.2 min calculated for 0.020 af (87% of inflow) Center-of-Mass det. time= 303.2 min (1,047.8 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	96.10'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.60'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	96.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 14.59 hrs HW=98.43' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 3P: unit7

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 101.91' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	99.10'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=101.91' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 14P: unit5

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 106.01' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	103.20'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	103.70'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap

6 Rows of 1 Chambers Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf			
0.018 af Total Available Storage			
Device Routing Invert Outlet Devices			
#1 Discarded 103.20' 1.020 in/hr Exfiltration over Wetted area			
Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=106.01' (Free Discharge) [↑] —1=Exfiltration (Exfiltration Controls 0.01 cfs)			
Summary for Pond 116P: CB 2			
Inflow Area =       0.192 ac, 53.87% Impervious, Inflow Depth = 4.75" for cornell 025 event         Inflow =       1.03 cfs @       12.09 hrs, Volume=       0.076 af         Outflow =       1.03 cfs @       12.09 hrs, Volume=       0.076 af, Atten= 0%, Lag= 0.0 min         Primary =       1.03 cfs @       12.09 hrs, Volume=       0.076 af			
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.36' @ 12.09 hrs			
Device Routing Invert Outlet Devices			
#1 Primary 95.91' <b>18.0"</b> Vert. Orifice/Grate C= 0.600			
Primary OutFlow Max=1.01 cfs @ 12.09 hrs HW=96.36' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.01 cfs @ 2.28 fps)			
Summary for Pond 149P: CB 3			
Inflow Area = 0.100 ac, 72.55% Impervious, Inflow Depth = 5.19" for cornell 025 event			
Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.043 af Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min			
Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min Primary = 0.57 cfs @ 12.09 hrs, Volume= 0.043 af			
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.24' @ 12.09 hrs			
Device Routing Invert Outlet Devices			
#1 Primary 95.91' 18.0" Vert. Orifice/Grate C= 0.600			
Primary OutFlow Max=0.56 cfs @ 12.09 hrs HW=96.24' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.56 cfs @ 1.96 fps)			
Summary for Pond 156P: CB 5			

Inflow Area =	0.102 ac, 68.97% Impervious, Inflow De	epth = 5.19" for cornell 025 event
Inflow =	0.58 cfs @ 12.09 hrs, Volume=	0.044 af
Outflow =	0.58 cfs @ 12.09 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.0 min
Primary =	0.58 cfs @ 12.09 hrs, Volume=	0.044 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

Peak Elev= 91.24' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.57 cfs @ 12.09 hrs HW=91.24' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.57 cfs @ 2.10 fps)

#### Summary for Pond 159P: CB 5

Inflow Area =	0.232 ac, 52.88% Impervious, Inflow De	epth = 4.75" for cornell 025 event
Inflow =	0.99 cfs @ 12.18 hrs, Volume=	0.092 af
Outflow =	0.99 cfs @ 12.18 hrs, Volume=	0.092 af, Atten= 0%, Lag= 0.0 min
Primary =	0.99 cfs @ 12.18 hrs, Volume=	0.092 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.37' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.98 cfs @ 12.18 hrs HW=91.37' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.98 cfs @ 2.43 fps)

#### Summary for Pond 167P: DCB 8

Inflow Area =	3.931 ac, 11.32% Impervious, Inflow I	Depth = 3.49" for cornell 025 event
Inflow =	9.65 cfs @ 12.36 hrs, Volume=	1.142 af
Outflow =	9.65 cfs @ 12.36 hrs, Volume=	1.142 af, Atten= 0%, Lag= 0.0 min
Primary =	9.65 cfs @ 12.36 hrs, Volume=	1.142 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 81.81' @ 12.36 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.77'	18.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=9.64 cfs @ 12.36 hrs HW=81.80' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 9.64 cfs @ 5.46 fps)

#### Summary for Pond 168P: CB 1

Inflow Area =	0.067 ac, 80.64% Impervious, Inflow De	epth = 5.42" for cornell 025 event
Inflow =	0.38 cfs @ 12.09 hrs, Volume=	0.030 af
Outflow =	0.38 cfs @ 12.09 hrs, Volume=	0.030 af, Atten= 0%, Lag= 0.0 min
Primary =	0.38 cfs @ 12.09 hrs, Volume=	0.030 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 102.58' @ 12.09 hrs oldoakenbucket2t Prepared by ANTHONY A. ESPOSITO

HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices	
#1	Primary	102.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.38 cfs @ 12.09 hrs HW=102.57' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.38 cfs @ 1.88 fps)

#### Summary for Pond 170P: DCB 9

Inflow Area =	0.449 ac, 60.11% Impervious, Inflow I	Depth = 4.86" for cornell 025 event
Inflow =	2.17 cfs @ 12.13 hrs, Volume=	0.182 af
Outflow =	2.17 cfs @ 12.13 hrs, Volume=	0.182 af, Atten= 0%, Lag= 0.0 min
Primary =	2.17 cfs @ 12.13 hrs, Volume=	0.182 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 81.10' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	80.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=2.13 cfs @ 12.13 hrs HW=81.09' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 2.13 cfs @ 3.09 fps)

#### Summary for Pond 171P: CHAMBERS UNIT 1

Inflow Area =	0.112 ac, 88.52% Impervious, Inflow De	epth = 5.66" for cornell 025 event
Inflow =	0.66 cfs @ 12.09 hrs, Volume=	0.053 af
Outflow =	0.03 cfs @ 14.66 hrs, Volume=	0.050 af, Atten= 95%, Lag= 154.6 min
Discarded =	0.03 cfs @ 14.66 hrs, Volume=	0.050 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 100.89' @ 14.66 hrs Surf.Area= 0.023 ac Storage= 0.027 af

Plug-Flow detention time= 351.5 min calculated for 0.050 af (94% of inflow) Center-of-Mass det. time= 316.9 min (1,077.5 - 760.6)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.030 af	20.40'W x 49.50'L x 5.00'H Prismatoid
			0.116 af Overall - 0.042 af Embedded = 0.074 af x 40.0% Voids
#2	99.60'	0.042 af	Cultec R-902HD x 28 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			4 Rows of 7 Chambers
			Cap Storage= +2.8 cf x 2 x 4 rows = 22.1 cf
		0.072 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	99.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.03 cfs @ 14.66 hrs HW=100.89' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.03 cfs)

### Summary for Pond 174P: CB 10

Inflow Area =	0.160 ac, 🗉	50.59% Impervious,	Inflow Depth = 4	.64" for cornell 025 event
Inflow =	0.84 cfs @	12.09 hrs, Volume	e= 0.062 af	
Outflow =	0.84 cfs @	12.09 hrs, Volume	e= 0.062 af	, Atten= 0%, Lag= 0.0 min
Primary =	0.84 cfs @	12.09 hrs, Volume	e= 0.062 af	

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 85.26' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices		
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600	

Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=85.25' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.83 cfs @ 2.32 fps)

#### Summary for Pond 175P: CHAMBERS UNIT 2

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 4.42" for cornell 025 event
Inflow =	1.79 cfs @ 12.09 hrs, Volume=	0.131 af
Outflow =	0.06 cfs @ 15.90 hrs, Volume=	0.093 af, Atten= 97%, Lag= 228.4 min
Discarded =	0.06 cfs @ 15.90 hrs, Volume=	0.093 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.97' @ 15.90 hrs Surf.Area= 0.046 ac Storage= 0.078 af

Plug-Flow detention time= 422.2 min calculated for 0.093 af (71% of inflow) Center-of-Mass det. time= 331.9 min (1,134.3 - 802.5)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.056 af	28.78'W x 69.33'L x 5.00'H Prismatoid
			0.229 af Overall - 0.090 af Embedded = 0.139 af x 40.0% Voids
#2	96.00'	0.090 af	Cultec R-902HD x 60 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 10 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.146 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	95.50'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.06 cfs @ 15.90 hrs HW=97.97' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.06 cfs)

#### Summary for Pond 176P: CB 6

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 4.42" for cornell 025 event
Inflow =	1.79 cfs @ 12.09 hrs, Volume=	0.131 af
Outflow =	1.79 cfs @ 12.09 hrs, Volume=	0.131 af, Atten= 0%, Lag= 0.0 min
Primary =	1.79 cfs @ 12.09 hrs, Volume=	0.131 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 98.23' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	97.50'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.76 cfs @ 12.09 hrs HW=98.22' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.76 cfs @ 2.90 fps)

#### Summary for Pond 177P: CB 11

Inflow Area =	0.038 ac,100.00% Impervious, Inf	flow Depth = 6.00" for cornell 025 event
Inflow =	0.23 cfs @ 12.08 hrs, Volume=	0.019 af
Outflow =	0.23 cfs @ 12.08 hrs, Volume=	0.019 af, Atten= 0%, Lag= 0.0 min
Primary =	0.23 cfs @ 12.08 hrs, Volume=	0.019 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 85.02' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.23 cfs @ 12.08 hrs HW=85.02' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.23 cfs @ 1.64 fps)

#### Summary for Pond 178P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.59 hrs, Volume=	0.020 af, Atten= 96%, Lag= 150.1 min
Discarded =	0.01 cfs @_ 14.59 hrs, Volume=	0.020 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.83' @ 14.59 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 363.2 min calculated for 0.020 af (87% of inflow) Center-of-Mass det. time= 303.2 min (1,047.8 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1	Discarded	95.50'	1.020 in/hr Exfiltration over Wetted area
----	-----------	--------	-------------------------------------------

Discarded OutFlow Max=0.01 cfs @ 14.59 hrs HW=97.83' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 182P: CB 12

Inflow Area =	0.241 ac, 63.01% Impervious, Inflow D	epth = 4.97" for cornell 025 event
Inflow =	1.33 cfs @ 12.09 hrs, Volume=	0.100 af
Outflow =	1.33 cfs @ 12.09 hrs, Volume=	0.100 af, Atten= 0%, Lag= 0.0 min
Primary =	1.33 cfs @ 12.09 hrs, Volume=	0.100 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.66' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.31 cfs @ 12.09 hrs HW=79.65' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.31 cfs @ 2.65 fps)

#### Summary for Pond 185P: CB 13

Inflow Area =	0.105 ac, 67.31% Impervious, Inflow D	epth = 5.08" for cornell 025 event
Inflow =	0.59 cfs @ 12.09 hrs, Volume=	0.044 af
Outflow =	0.59 cfs @ 12.09 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.0 min
Primary =	0.59 cfs @ 12.09 hrs, Volume=	0.044 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.44' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.58 cfs @ 12.09 hrs HW=79.43' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.58 cfs @ 2.11 fps)

#### Summary for Pond 190P: CHAMBERS UNIT 4

Inflow Area =	4.924 ac, 21.44% Impervious, Inflow De	epth = 3.78" for cornell 025 event
Inflow =	11.83 cfs @ 12.33 hrs, Volume=	1.549 af
Outflow =	11.77 cfs @ 12.35 hrs, Volume=	1.499 af, Atten= 0%, Lag= 1.6 min
Discarded =	0.06 cfs @ 12.35 hrs, Volume=	0.095 af
Primary =	11.71 cfs @ 12.35 hrs, Volume=	1.403 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.01' @ 12.35 hrs Surf.Area= 0.039 ac Storage= 0.110 af

Plug-Flow detention time= 43.7 min calculated for 1.499 af (97% of inflow) Center-of-Mass det. time= 24.9 min (854.3 - 829.4) oldoakenbucket2t

 Type III 24-hr cornell 025 Rainfall=6.24"

 Printed 12/12/2022

 LC
 Page 127

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	76.00'	0.045 af	24.50'W x 69.00'L x 5.00'H Prismatoid
			0.194 af Overall - 0.082 af Embedded = 0.112 af x 40.0% Voids
#2	76.50'	0.082 af	Cultec R-902HD x 55 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			5 Rows of 11 Chambers
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf
		0.127 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	76.00' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
#2	Primary	78.40' <b>24</b> .	.0" Vert. Orifice/Grate C= 0.600
	-		

Discarded OutFlow Max=0.06 cfs @ 12.35 hrs HW=80.01' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=11.70 cfs @ 12.35 hrs HW=80.01' (Free Discharge) ←2=Orifice/Grate (Orifice Controls 11.70 cfs @ 4.32 fps)

#### Summary for Pond 193P: CHAMBERS UNIT 3

Inflow Area =	0.672 ac, 61.75% Impervious, Inflow De	epth = 4.97" for cornell 025 event
Inflow =	3.23 cfs @ 12.11 hrs, Volume=	0.278 af
Outflow =	0.71 cfs @ 12.58 hrs, Volume=	0.199 af, Atten= 78%, Lag= 28.4 min
Discarded =	0.07 cfs @ 12.58 hrs, Volume=	0.126 af
Primary =	0.63 cfs @ 12.58 hrs, Volume=	0.073 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 90.48' @ 12.58 hrs Surf.Area= 0.057 ac Storage= 0.135 af

Plug-Flow detention time= 293.0 min calculated for 0.199 af (71% of inflow) Center-of-Mass det. time= 203.3 min ( 991.6 - 788.3 )

Volume	Invert	Avail.Storage	Storage Description
#1	87.10'	0.066 af	43.00'W x 57.30'L x 5.00'H Prismatoid
			0.283 af Overall - 0.117 af Embedded = 0.166 af x 40.0% Voids
#2	87.60'	0.117 af	Cultec R-902HD x 78 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 13 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.183 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	87.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
#2	Primary	90.00' <b>8.0</b>	)" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.07 cfs @ 12.58 hrs HW=90.48' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.63 cfs @ 12.58 hrs HW=90.48' (Free Discharge) [↑] 2=Orifice/Grate (Orifice Controls 0.63 cfs @ 2.35 fps)

#### Summary for Pond 197P: unit6

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 101.91' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1	Discarded	99 10'	1.020 in/hr Exfiltration over Wetted area
# 1	Discalucu	33.10	

Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=101.91' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 198P: unit8

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.02 cfs @ 13.94 hrs, Volume=	0.023 af, Atten= 95%, Lag= 111.5 min
Discarded =	0.02 cfs @13.94 hrs, Volume=	0.023 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.25' @ 13.94 hrs Surf.Area= 0.009 ac Storage= 0.011 af

Plug-Flow detention time= 295.2 min calculated for 0.023 af (100% of inflow) Center-of-Mass det. time= 294.7 min (1,039.3 - 744.6) oldoakenbucket2t Prepared by ANTHONY A. ESPOSITO

Type III 24-hr cornell 025 Rainfall=6.24" Printed 12/12/2022 HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC Page 129

Volume	Invert	Avail.Storage	Storage Description
#1	94.10'	0.013 af	8.50'W x 47.10'L x 4.50'H Prismatoid
			0.041 af Overall - 0.010 af Embedded = 0.032 af x 40.0% Voids
#2	94.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	94.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
Discard	ed OutFlow N	1ax=0.02 cfs @	13.94 hrs HW=96.25' (Free Discharge)
T1=Ex	filtration (Exfi	Itration Controls	s 0.02 cfs)
		Si	ummary for Pond 202P: unit9
Inflow A	rea = 0.0	046 ac.100.00%	Impervious, Inflow Depth = 6.00" for cornell 025 event
Inflow		8 cfs @ 12.08	
Outflow		1 cfs @ 14.25	
Discarded = $0.01 \text{ cfs}$ @ 14.25 hrs, Volume= $0.021 \text{ af}$			
Routing	by Stor-Ind me	ethod, Time Spa	n= 0.00-29.00 hrs, dt= 0.04 hrs
Peak Ele	ev= 93.41' @ 1	4.25 hrs Surf.A	Area= 0.007 ac Storage= 0.012 af
Plug-Flo	w detention tir	ne= 350.5 min c	calculated for 0.021 af (90% of inflow)
Center-o	of-Mass det. tir	ne= 301.4 min (	(1,046.0 - 744.6 )
Volume	Invert	Avail.Storage	Storage Description
#1	90.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	91.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	90.60' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
Discard	ed OutFlow M	1ax=0.01 cfs @	14.25 hrs HW=93.41' (Free Discharge)

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=93.41' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 204P: unit10

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	Depth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 92.41' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	89.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	90.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			5

Device	Routing	Invert	Outlet Devices
#1	Discarded	89.60'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=92.41' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 206P: unit11

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 95.61' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	92.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	93.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Discarded	92.80' 1.0	020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=95.61' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 209P: unit12

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.31' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	93.50'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	94.00'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 93.50' 1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=96.31' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 219P: unit13

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 94.61' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	91.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	92.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

#### oldoakenbucket2t

 Type III 24-hr cornell 025 Rainfall=6.24"

 Printed 12/12/2022

 LC
 Page 132

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	91.80'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=94.61' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 222P: unit14

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 89.81' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	87.00'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	87.50'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	87.00'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=89.81' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 230P: unit15

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 89.81' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6) oldoakenbucket2t

 Type III 24-hr cornell 025 Rainfall=6.24"

 Printed 12/12/2022

 LC
 Page 133

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail Storage	Storage Description
#1	87.00'		7.10'W x 42.00'L x 4.50'H Prismatoid
" 1	01.00	0.000 ai	0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	87.50'	0.010 af	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	87.00' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
Discard	ed OutFlow N	Max=0.01 cfs @	14.25 hrs HW=89.81' (Free Discharge)
└1=Ex	filtration (Exf	iltration Controls	s 0.01 cfs)
		_	
		Su	Immary for Pond 231P: unit16
nflow A	rea = 0	046 ac 100 00%	Impervious, Inflow Depth = 6.00" for cornell 025 event
nflow		28 cfs @ 12.08	
Outflow		01 cfs @ 14.25	
Discarde		01 cfs @ 14.25	
			an= 0.00-29.00 hrs, dt= 0.04 hrs
Peak Ele	ev= 84.41 @	14.25 nrs Surt.#	Area= 0.007 ac Storage= 0.012 af
Plug-Elo	w detention ti	me= 350 5 min (	calculated for 0.021 af (90% of inflow)
			(1,046.0 - 744.6)
			·····,
Volume	Invert		Storage Description
#1	81.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	82.10'	0.010 af	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	81.60'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=84.41' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 232P: unit17

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 81.61' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	78.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	79.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	78.80'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=81.61' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 233P: unit18

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 77.71' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Invert	Avail.Storage	Storage Description
74.90'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
		0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
75.40'	0.010 af	Cultec R-902HD x 6 Inside #1
		Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
		Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
		6 Rows of 1 Chambers
		Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
	0.018 af	Total Available Storage
Routing	Invert Ou	itlet Devices
Discarded	74.90' <b>1.0</b>	020 in/hr Exfiltration over Wetted area
	74.90' 75.40' Routing	74.90' 0.008 af 75.40' 0.010 af 0.018 af Routing Invert Ou

Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=77.71' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 240P: unit19

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.11' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	76.30'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	76.80'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 76.30' 1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=79.11' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 241P: unit20

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.91' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	77.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	77.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

oldoakenbucket2t

 Type III 24-hr cornell 025 Rainfall=6.24"

 Printed 12/12/2022

 LC
 Page 136

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	77.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=79.91' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 242P: unit21

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 82.91' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6)

Volume	Invert	Avail.Storage	Storage Description	
#1	80.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid	
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids	
#2	80.60'	0.010 af	Cultec R-902HD x 6 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			6 Rows of 1 Chambers	
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf	
		0.018 af	Total Available Storage	
			-	

Device	Routing	Invert	Outlet Devices
#1	Discarded	80.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=82.91' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.01 cfs)

#### Summary for Pond 243P: unit22

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af, Atten= 95%, Lag= 129.8 min
Discarded =	0.01 cfs @ 14.25 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 84.41' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow) Center-of-Mass det. time= 301.4 min (1,046.0 - 744.6) oldoakenbucket2t

 Type III 24-hr cornell 025 Rainfall=6.24"

 Printed 12/12/2022

 LC
 Page 137

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume Invert Avail.Storage Storage Description
#1 81.60' 0.008 af 7.10'W x 42.00'L x 4.50'H Prismatoid
0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2 82.10' 0.010 af Cultec R-902HD x 6 Inside #1
Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
6 Rows of 1 Chambers
Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
0.018 af Total Available Storage
Device Routing Invert Outlet Devices
#1 Discarded 81.60' 1.020 in/hr Exfiltration over Wetted area
Discarded OutFlow Max=0.01 cfs @ 14.25 hrs HW=84.41' (Free Discharge) [●] 1=Exfiltration (Exfiltration Controls 0.01 cfs)
Summary for Pond 244P: unit23
Inflow Area = 0.046 ac,100.00% Impervious, Inflow Depth = 6.00" for cornell 025 event
Inflow = $0.28 \text{ cfs} @ 12.08 \text{ hrs}$ , Volume= $0.023 \text{ af}$
Outflow = 0.01 cfs @ 14.25 hrs, Volume= 0.021 af, Atten= 95%, Lag= 129.8 min
Discarded = 0.01 cfs @ 14.25 hrs, Volume= 0.021 af
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 84.41' @ 14.25 hrs Surf.Area= 0.007 ac Storage= 0.012 af
Plug-Flow detention time= 350.5 min calculated for 0.021 af (90% of inflow)
Center-of-Mass det. time= 301.4 min ( 1,046.0 - 744.6 )
Volume Invert Avail.Storage Storage Description
#1 81.60' 0.008 af 7.10'W x 42.00'L x 4.50'H Prismatoid
0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2 82.10' 0.010 af <b>Cultec R-902HD</b> x 6 Inside #1
Effective Size= $69.8^{\circ}W \times 48.0^{\circ}H => 17.65 \text{ sf } \times 3.67^{\circ}L = 64.7 \text{ cf}$
Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
6 Rows of 1 Chambers
Cap Storage= $+2.8$ cf x 2 x 6 rows = 33.1 cf
0.018 af Total Available Storage
Device         Routing         Invert         Outlet         Devices           #1         Discorded         \$1.60         1.020 in/br Exfiltration over Wetted press

#1 Discarded 81.60' 1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.25 hrs HW=84.41' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 245P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 6.00" for cornell 025 event
Inflow =	0.28 cfs @ 12.08 hrs, Volume=	0.023 af
Outflow =	0.01 cfs @ 14.59 hrs, Volume=	0.020 af, Atten= 96%, Lag= 150.1 min
Discarded =	0.01 cfs @ 14.59 hrs, Volume=	0.020 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 100.33' @ 14.59 hrs Surf.Area= 0.007 ac Storage= 0.012 af

Plug-Flow detention time= 363.2 min calculated for 0.020 af (87% of inflow) Center-of-Mass det. time= 303.2 min (1,047.8 - 744.6)

ls
f

Device	Routing	IIIVEIL	Outlet Devices
#1	Discarded	98.00'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.01 cfs @ 14.59 hrs HW=100.33' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

## Summary for Pond 246P: unit 1

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Daviaa	Douting	Invest Ou	that Daviesa
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	95.50' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge) [↑]-1=Exfiltration (Controls 0.00 cfs)

7.72"

#### Summary for Subcatchment 114S: TO CB 2

Runoff = 1.53 cfs @ 12.09 hrs, Volume= 0.116 af, Depth= 7.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

	Area (sf	) CN	V Des	scription	l		
*	4,511	1 98	3 IMP	ERVIO	JS		
	3,863	3 74	4 >75	% Gras	s cover, G	ood, HSG C	
	8,374	4 87	7 Wei	Weighted Average			
	3,863	3	46.1	46.13% Pervious Area			
	4,511	1	53.8	87% lmj	pervious A	rea	
	Tc Lengt	th Sl	ope Ve	elocity	Capacity	Description	
_(r	nin) (fee	et) (1	ft/ft) (1	ft/sec)	(cfs)		
	6.0					Direct Entry, tr55 min.	

#### Summary for Subcatchment 119S: TO CB 3

Runoff	=	0.83 cfs @	12.08 hrs,	Volume=	0.065 af, Depth=
--------	---	------------	------------	---------	------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

	Area	(sf)	CN	Description	า			
*	3,1	172	98	<b>IMPERVIO</b>	US			
	1,2	200	74	>75% Gras	ss cover, G	iood, HSG C		
	4,3	372	91	Weighted /	Average			
	1,2	200		27.45% Pervious Area				
	3,1	172		72.55% Impervious Area				
	Tc Lei	ngth	Slope	e Velocity	Capacity	Description		
(r	nin) (f	eet)	(ft/ft)	) (ft/sec)	(cfs)			
	6.0					Direct Entry, TR-55 MIN.		

## Summary for Subcatchment 153S: TO CB 4

Runoff = 1.48 cfs @ 12.18 hrs, Volume= 0.140 af, Depth= 7.23"

	Area (sf)	CN	Description			
*	5,335	98	IMPERVIOUS			
	4,754	74	>75% Grass cover, Good, HSG C			
	10,089	87	Weighted Average			
	4,754		47.12% Pervious Area			
	5,335		52.88% Impervious Area			

#### oldoakenbucket2t

Type III 24-hr cornell 100 Rainfall=8.80" Printed 12/12/2022

Prepared by ANTHONY A.	ESPOSITO
HydroCAD® 10.00-13 s/n 01291	© 2014 HydroCAD Software Solutions LLC

	Page 140
	-

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	12.0	50	0.0800	0.07		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	1.1	188	0.0320	2.88		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	0.0	7	0.0200	2.87		Shallow Concentrated Flow, CD
						Paved Kv= 20.3 fps
	0.2	47	0.0300	3.52		Shallow Concentrated Flow, DE
_						Paved Kv= 20.3 fps
	13.3	292	Total			

#### Summary for Subcatchment 155S: TO CB 5

Runoff	=	0.85 cfs @	12.08 hrs, Volume=	0.066 af, Depth= 7.72"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Area (sf)	CN	Description	า	
3,072	98	IMPERVIO	US	
1,382	74	>75% Gras	ss cover, G	Good, HSG C
4,454	91	Weighted <i>J</i>	Average	
1,382		31.03% Pe	rvious Area	a
3,072		68.97% lm	pervious A	rea
		,	Capacity (cfs)	Description
i.0				Direct Entry, tr-55 min
	3,072 1,382 4,454 1,382 3,072 Tc Length	3,072 98 1,382 74 4,454 91 1,382 3,072 Tc Length Slope in) (feet) (ft/ft	3,072 98 IMPERVIO 1,382 74 >75% Gras 4,454 91 Weighted 1,382 31.03% Pe 3,072 68.97% Im Tc Length Slope Velocity in) (feet) (ft/ft) (ft/sec)	3,072 98 IMPERVIOUS 1,382 74 >75% Grass cover, G 4,454 91 Weighted Average 1,382 31.03% Pervious Are 3,072 68.97% Impervious A Tc Length Slope Velocity Capacity in) (feet) (ft/ft) (ft/sec) (cfs)

## Summary for Subcatchment 166S: CB 6

Runoff = 2.72 cfs @ 12.09 hrs, Volume= 0.203 af, Depth= 6.87"

	Α	rea (sf)	CN	Description	า	
		8,834	74	>75% Gras	ss cover, G	Good, HSG C
*		6,602	98	PAVEMEN	T, HSG C	
		15,436	84	Weighted A	Average	
		8,834		57.23% Pe	ervious Area	a
		6,602		42.77% lm	pervious A	rea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
	6.0					Direct Entry, tr-55 min

#### Summary for Subcatchment 167S: TO CB 1

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.044 af, Depth= 7.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

	А	rea (sf)	CN	Description	า	
*		2,341	98	<b>IMPERVIO</b>	US	
		562	74	>75% Gras	ss cover, G	lood, HSG C
		2,903	93	Weighted /	Average	
		562		19.36% Pe	rvious Area	a
		2,341		80.64% Im	pervious A	rea
	Тс	Length	Slope	Velocity	Capacity	Description
(	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.1	50	0.0600	0.16		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.37"
	0.1	22	0.0600	3.94		Shallow Concentrated Flow, BC
						Unpaved Kv= 16.1 fps
	1.1	185	0.0200	2.87		Shallow Concentrated Flow, CD
						Paved Kv= 20.3 fps
	6.3	257	Total			

#### Summary for Subcatchment 169S: TO DCB 8

Runoff	=	15.89 cfs @	12.36 hrs, Volume=	1.890 af, Depth= 5.77"
Runon		10.00 013 @	12.00 ms, volume=	

	Area (sf)	CN	Description
*	16,852	98	pavement
*	2,343	98	EXIST HSE
	97,544	74	>75% Grass cover, Good, HSG C
	54,320	70	Woods, Good, HSG C
*	183	98	WALL
	171,242	75	Weighted Average
	151,864		88.68% Pervious Area
	19,378		11.32% Impervious Area

#### oldoakenbucket2t

Prepared by ANTHONY A. ESPOSITO

Type III 24-hr cornell 100 Rainfall=8.80" Printed 12/12/2022 HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC Page 142

Slope Velocity Capacity Description Tc Length (feet) (ft/ft) (min) (ft/sec) (cfs) 50 0.0200 20.9 0.04 Sheet Flow, AB Woods: Dense underbrush n= 0.800 P2= 3.37" 1.7 298 0.0330 2.92 Shallow Concentrated Flow, BC Unpaved Kv= 16.1 fps Shallow Concentrated Flow, CD 0.7 136 0.0440 3.38 Unpaved Kv= 16.1 fps **Shallow Concentrated Flow, DE** 0.2 48 0.0437 4.24 Paved Kv= 20.3 fps 0.0 7 0.0200 2.87 Shallow Concentrated Flow, EF Paved Kv= 20.3 fps 2.6 550 0.0300 3.52 Shallow Concentrated Flow, FG Paved Kv= 20.3 fps

26.1 1,089 Total

#### Summary for Subcatchment 173S: TO CB 10

Runoff	=	1.26 cfs @	12.09 hrs,	Volume=	0.095 af,	Depth= 7.11"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

	A	rea (sf)	CN	Description	n					
*		3,534	98	IMPERVIO	US					
		3,452	74	>75% Gras	ss cover, G	Bood, HSG C				
		6,986	86	Weighted <i>i</i>	Weighted Average					
		3,452		49.41% Pe	ervious Area	a				
		3,534		50.59% lm	pervious A	rea				
	Tc	Length	Slop			Description				
(	min)	(feet)	(ft/ft	) (ft/sec)	(cfs)					
	6.0					Direct Entry, TR55 MIN				
				Summa	ary for Su	ubcatchment 176S: TO CB 11				

Runoff = 0.32 cfs @ 12.08 hrs, Volume= 0.027 af, Depth= 8.56"

_	A	rea (sf)	CN	Description	n	
*		1,635	98	<b>IMPERVIO</b>	US	
		1,635		100.00% lr	mpervious <i>i</i>	Area
	Тс	Length	Slope	• Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
	6.0					Direct Entry, tr-55 min

#### Summary for Subcatchment 181S: TO CB 12

Runoff = 1.96 cfs @ 12.09 hrs, Volume= 0.150 af, Depth= 7.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

	Area (sf)	CN	Description	n	
*	6,607	98	IMPERVIC	US	
	3,879	74	>75% Gra	ss cover, G	lood, HSG C
	10,486	89	Weighted	Average	
	3,879		36.99% P€	ervious Area	a
	6,607		63.01% Im	pervious A	rea
	Tc Length	Slop			Description
(	(min) (feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0				Direct Entry, TR 55 MIN
			_		

#### Summary for Subcatchment 184S: TO CB 13

Runoff	=	0.86 cfs @	12.08 hrs, V	'olume=	0.067 af,	Depth= 7.59"
--------	---	------------	--------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

	Area (sf)	CN	Description		
*	3,082	98	IMPERVIOUS		
	1,497	74	>75% Grass cover, Good, HSG C		
	4,579	90	Weighted Average		
	1,497		32.69% Pervious Area		
	3,082		67.31% Impervious Area		
(n	Tc Length nin) (feet)	Slop (ft/f			
	6.0		Direct Entry, TR 55 MIN		
	Summary for Subcatchment 193S: EXIST TO WETLANDS				

Runoff = 42.74 cfs @ 12.28 hrs, Volume= 4.545 af, Depth= 5.40"

oldoakenbucket2t Prepared by ANTHONY A ESPOSITO 
 Type III 24-hr cornell 100 Rainfall=8.80"

 Printed 12/12/2022

 LC
 Page 144

The parce by Anthon A.	
HydroCAD® 10.00-13 s/n 01291	© 2014 HydroCAD Software Solutions LLC

	А	rea (sf)	CN	Description	n	
	З	21,168	70	Woods, Go	ood, HSG C	C
*		8,364	98	ROOF, HS	GC	
*		436	98	CONCRET	FE, HSG C	
		9,975	96	Gravel sur	face, HSG	C
		44,126	74	>75% Gras	ss cover, G	lood, HSG C
*		10,759	98	PAVEMEN	IT, HSG C	
_		44,910	65	Brush, Goo	od, HSG C	
	4	39,738	72	Weighted /	Average	
	4	20,179		95.55% Pe	ervious Area	а
		19,559		4.45% Imp	ervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.8	50	0.0300	0.05		Sheet Flow, AB
						Woods: Dense underbrush n= 0.800 P2= 3.37"
	2.5	524	0.0458	3.45		Shallow Concentrated Flow, BC
_						Unpaved Kv= 16.1 fps
	20.3	574	Total			

## Summary for Subcatchment 194S: PROP TO WETS

Runoff = 22.29 cfs @ 12.16 hrs, Volume=

1.898 af, Depth= 5.53"

	Area (sf)	CN	Descriptio	n								
	62,378	70	Woods, Good, HSG C									
	111,644	74	>75% Gras	75% Grass cover, Good, HSG C								
*	1,394	98	WALLS, H	SG C								
	479	96	Gravel sur	face, HSG	В							
*	3,703	98	PAVEMEN	T								
	179,598	73	Weighted /	Average								
	174,501		97.16% Pe	ervious Are	а							
	5,097		2.84% Imp	ervious Ar	ea							
Тс	0	Slope			Description							
<u>(min</u>	/ /	(ft/ft)		(cfs)								
8.0	) 50	0.0200	0.10		Sheet Flow, AB							
					Grass: Dense n= 0.240 P2= 3.37"							
0.5	5 68	0.0200	2.28		Shallow Concentrated Flow, BC							
					Unpaved Kv= 16.1 fps							
0.1	1 24	0.0200	2.87		Shallow Concentrated Flow, CD							
					Paved Kv= 20.3 fps							
2.6	532	0.0450	3.42		Shallow Concentrated Flow, DE							
					Unpaved Kv= 16.1 fps							
11.2	2 674	Total										

#### Summary for Subcatchment 195S: roof unit2

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

A	rea (sf)	CN	Description	n					
	1,992	98	Roofs, HS	G A					
	1,992		100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, tr-55 min				

## Summary for Subcatchment 196S: roof unit3

Runoff	=	0.39 cfs @	12.08 hrs,	Volume=	0.033 af, Depth= 8.56"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Area	a (sf)	CN	Description	า							
1	,992	98	98 Roofs, HSG A								
1	,992		100.00% Impervious Area								
	ength (feet)	Slope (ft/ft)		Capacity (cfs)	Description						
6.0		Direct Entry, tr-55 min									
	Summary for Subcatchment 200S: roof unit8										

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	GA	
1,992		100.00% lr	Area	
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 201S: roof uniT9

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

A	rea (sf)	CN	Description	n					
	1,992	98	Roofs, HS	G A					
	1,992		100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, tr-55 min				

## Summary for Subcatchment 203S: roof uniT10

Runoff	=	0.39 cfs @	12.08 hrs,	Volume=	0.033 af, Depth= 8.56"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Ar	rea (sf)	CN	Description	n							
	1,992	98	98 Roofs, HSG A								
	1,992		100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
6.0					Direct Entry, tr-55 min						
	Summary for Subcatchment 205S: roof uniT11										

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Area (sf)	CN	Descriptio	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 206S: TO DCB 9

Runoff = 3.21 cfs @ 12.13 hrs, Volume= 0.275 af, Depth= 7.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

	Area (sf)	CN	Descriptio	า	
*	11,762	98	pavement		
	7,805	74	>75% Gras	ss cover, G	Bood, HSG C
	19,567	88	Weighted /	Average	
	7,805		39.8 <mark>9</mark> % Pe	ervious Area	a
	11,762	(	60.11% lm	pervious A	rea
T	c Length	Slope	Velocity	Capacity	Description
(min	) (feet)	(ft/ft)	(ft/sec)	(cfs)	
8.0	D 50	0.0200	0.10		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.37"
0.1	1 11	0.0200	2.28		Shallow Concentrated Flow, BC
					Unpaved Kv= 16.1 fps
0.0	D 7	0.0200	2.87		Shallow Concentrated Flow, CD
					Paved Kv= 20.3 fps
1.0	5 333	0.0300	3.52		Shallow Concentrated Flow, DE
					Paved Kv= 20.3 fps
9.	7 401	Total			

#### Summary for Subcatchment 207S: roof unit4

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Area (sf)	CN	Description	า					
1,992	98	Roofs, HS	GΑ					
1,992		100.00% Impervious Area						
Tc Length (min) (feet) 6.0	Slop (ft/ft	,	Capacity (cfs)	Description Direct Entry, tr-55 min				
0.0				Briest Endy, a oo nim				

#### Summary for Subcatchment 208S: roof uniT12

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

oldoakenbucket2t	Type III 24-hr corneli
Prepared by ANTHONY A. ESPOSITO	

HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

					· · · · · · · · · · · · · · · · · · ·
Are	ea (sf) C	CN Descriptio	n		
	1,992 9	98 Roofs, HS	G A		
	1,992	100.00%	mpervious /	Area	
Tc L _(min)	_ength \$ (feet)	Slope Velocity (ft/ft) (ft/sec)		Description	
6.0				Direct Entry	r, tr-55 min
		Summa	ry for Sul	ocatchment	218S: roof uniT13
Runoff	= 0	0.39 cfs @ 12	08 hrs, Vol	ume=	0.033 af, Depth= 8.56"
		20 method, UH= II 100 Rainfall=		hted-CN, Tin	ne Span= 0.00-29.00 hrs, dt= 0.04 hrs
Are	ea (sf) C	CN Descriptio	n		
	1,992 9	98 Roofs, HS	G A		
	1,992	100.00%	mpervious /	Area	
Tc L _(min)	_ength \$ (feet)	Slope Velocity (ft/ft) (ft/sec)		Description	
6.0				Direct Entry	r, tr-55 min
		Summ	ary for Su	ıbcatchmer	t 220S: roof unit5
Runoff	= 0	0.39 cfs @ 12	08 hrs, Vol	ume=	0.033 af, Depth= 8.56"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr  cornell 100 Rainfall=8.80"					
Аге	ea (sf) C	CN Descriptio	n		
	1,992 9	98 Roofs, HS	G A		
	1,992	100.00%	mpervious /	Агеа	
Tc L	_ength	Slope Velocity	Capacity	Description	

(feet) (ft/ft) (ft/sec) (cfs) (min) 6.0

Direct Entry, tr-55 min

## Summary for Subcatchment 221S: roof uniT14

0.39 cfs @ 12.08 hrs, Volume= Runoff 0.033 af, Depth= 8.56" =

 Area (sf)	CN	Description
1,992	98	Roofs, HSG A
1,992		100.00% Impervious Area

oldoakenbucket2t Type III 24-hr cornell 100 Rainfall=8.80"
Prepared by ANTHONY A. ESPOSITOPrinted 12/12/2022HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLCPage 149
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, tr-55 min
Summary for Subcatchment 223S: roof unit6
Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 100 Rainfall=8.80"
Area (sf) CN Description
1,992 98 Roofs, HSG A
1,992 100.00% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0     Direct Entry, tr-55 min
Summary for Subcatchment 224S: roof unit1
Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 100 Rainfall=8.80"
Area (sf) CN Description
1,992 98 Roofs, HSG A
1,992 100.00% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr-55 min
Summary for Subcatchment 225S: roof unit7
Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr_cornell 100 Rainfall=8.80"
Area (sf) CN Description
1,992 98 Roofs, HSG A
1,992 100.00% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, tr-55 min

#### Summary for Subcatchment 226S: roof uniT15

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lr	npervious .	Area
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

## Summary for Subcatchment 227S: roof uniT16

Runoff	=	0.39 cfs @	12.08 hrs, Vol	lume=	0.033 af,	Depth= 8.56"	
--------	---	------------	----------------	-------	-----------	--------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Are	ea (sf)	CN	Description	า				
	1,992	98	Roofs, HS	GΑ				
	1,992		100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0	Direct Entry, tr-55 min							
	Summary for Subcatchment 228S: roof uniT17							

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Area (sf)	CN	Descriptio	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 229S: roof uniT18

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

A	rea (sf)	CN	Descriptio	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% li	mpervious.	Area
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, tr-55 min

## Summary for Subcatchment 234S: roof uniT19

Runoff	=	0.39 cfs @	12.08 hrs, Vol	lume=	0.033 af,	Depth= 8.56"	
--------	---	------------	----------------	-------	-----------	--------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Ar	rea (sf)	CN	Description	า				
	1,992	98	Roofs, HS	GΑ				
	1,992		100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
6.0	Direct Entry, tr-55 min							
	Summary for Subcatchment 235S: roof uniT20							

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Area (sf)	CN	Descriptio	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 236S: roof uniT21

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

A	rea (sf)	CN	Description	n	
	1,992	98	Roofs, HS	G A	
	1,992		100.00% lr	mpervious.	Area
Tc <u>(min)</u> 6.0	Length (feet)	Slope (ft/ft	e Velocity ) (ft/sec)	Capacity (cfs)	Description Direct Entry, tr-55 min
0.0					,,,

## Summary for Subcatchment 237S: roof uniT22

Runoff	=	0.39 cfs @	12.08 hrs, '	Volume=	0.033 af, Depth= 8.56"	
--------	---	------------	--------------	---------	------------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Area (sf)	CN	Description	า			
1,992	98	Roofs, HS	G A			
1,992		100.00% lr	npervious <i>i</i>	Area		
Tc Length (min) (feet)		,	Capacity (cfs)	Description		
6.0				Direct Entry, tr-55 min		
Summary for Subcatchment 238S: roof uniT23						

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

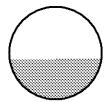
Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	GA	
1,992		100.00% lr	mpervious /	Area
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min

#### Summary for Subcatchment 239S: roof uniT24

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 8.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Type III 24-hr cornell 100 Rainfall=8.80"

Area (sf)	CN	Description	n	
1,992	98	Roofs, HS	G A	
1,992		100.00% lı	mpervious /	Area
Tc Length (min) (feet			Capacity (cfs)	Description
6.0				Direct Entry, tr-55 min


## Summary for Reach 118R: CB 2 TO DMH 1

Inflow Area =	0.192 ac, 53.87% Impervious, Inflow D	epth = 7.23" for cornell 100 event
Inflow =	1.53 cfs @ 12.09 hrs, Volume=	0.116 af
Outflow =	1.53 cfs @ 12.09 hrs, Volume=	0.116 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.64 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.54 fps, Avg. Travel Time= 0.1 min

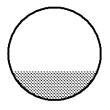
Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'



## Summary for Reach 150R: CB 3 TO DMH 1

 Inflow Area =
 0.100 ac, 72.55% Impervious, Inflow Depth =
 7.72" for cornell 100 event


 Inflow =
 0.83 cfs @
 12.08 hrs, Volume=
 0.065 af

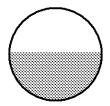
 Outflow =
 0.83 cfs @
 12.09 hrs, Volume=
 0.065 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.92 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.28 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.87 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0118 '/' Inlet Invert= 95.91', Outlet Invert= 95.78'




## Summary for Reach 151R: DMH 1 TO DMH 2

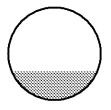
Inflow Area =	0.293 ac, 60.28% Impervious, Inflow I	Depth = 7.40" for cornell 100 event
Inflow =	2.36 cfs @ 12.09 hrs, Volume=	0.180 af
Outflow =	2.35 cfs @ 12.09 hrs, Volume=	0.180 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.66 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.87 fps, Avg. Travel Time= 1.2 min

Peak Storage= 57 cf @ 12.09 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.37 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 138.0' Slope= 0.0151 '/' Inlet Invert= 95.68', Outlet Invert= 93.60'




## Summary for Reach 157R: CB 5 TO DMH 3

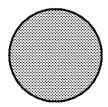
Inflow Area =	0.102 ac, 68.97% Impervious, Inflow D	Depth = 7.72" for cornell 100 event
Inflow =	0.85 cfs @ 12.08 hrs, Volume=	0.066 af
Outflow =	0.85 cfs @ 12.09 hrs, Volume=	0.066 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.05 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'




## Summary for Reach 158R: DMH 3 TO HYDRO2

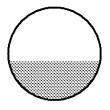
Inflow Area =	0.626 ac, 58.96% Impervious, Inflow	Depth = 7.39"	for cornell 100 event
Inflow =	4.38 cfs @ 12.11 hrs, Volume=	0.386 af	
Outflow =	2.79 cfs @ 12.04 hrs, Volume=	0.386 af, Atte	en= 36%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.04 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 0.4 min

Peak Storage= 31 cf @ 12.04 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.79 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 39.0' Slope= 0.0062 '/' Inlet Invert= 90.39', Outlet Invert= 90.15'




## Summary for Reach 160R: CB 4 TO DMH 3

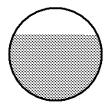
Inflow Area	a =	0.232 ac, 52.88% lm	pervious, Inflow D	epth = 7.23"	for cornell 100 event
Inflow	=	1.48 cfs @ 12.18 hrs	s, Volume=	0.140 af	
Outflow	=	1.48 cfs @ 12.18 hrs	s, Volume=	0.140 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.71 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.66 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.18 hrs Average Depth at Peak Storage= 0.42' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.02 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0127 '/' Inlet Invert= 90.86', Outlet Invert= 90.72'




## Summary for Reach 164R: HYDRO2 BASIN 3

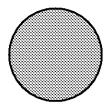
Inflow Area =	0.626 ac, 58.96% Impervious, Inflow D	Depth = 7.39" for cornell 100 event
Inflow =	2.79 cfs @ 12.04 hrs, Volume=	0.386 af
Outflow =	2.80 cfs @ 12.04 hrs, Volume=	0.386 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.66 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.88 fps, Avg. Travel Time= 0.1 min

Peak Storage= 4 cf @ 12.04 hrs Average Depth at Peak Storage= 0.71' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.25 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 6.0' Slope= 0.0083 '/' Inlet Invert= 90.05', Outlet Invert= 90.00'




## Summary for Reach 168R: DCB 8 TO DMH 4

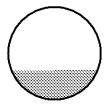
Inflow Area =	3.931 ac, 11.32% Impervious, Inflow	/ Depth = 5.77"	for cornell 100 event
Inflow =	15.89 cfs @ 12.36 hrs, Volume=	1.890 af	
Outflow =	10.97 cfs @  12.20 hrs, Volume=	1.890 af, Atte	en= 31%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 7.07 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.26 fps, Avg. Travel Time= 0.1 min

Peak Storage= 19 cf @ 12.20 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.97 cfs

18.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0109 '/' Inlet Invert= 79.77', Outlet Invert= 79.65'




## Summary for Reach 169R: CB 1 TO HYDRO 1

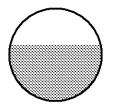
Inflow Area =	0.067 ac, 80.64% Impervious, Inflow D	Depth = 7.96" for cornell 100 event
Inflow =	0.55 cfs @ 12.09 hrs, Volume=	0.044 af
Outflow =	0.55 cfs @ 12.09 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.57 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.84 fps, Avg. Travel Time= 0.5 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 24.0' Slope= 0.0050 '/' Inlet Invert= 102.27', Outlet Invert= 102.15'




## Summary for Reach 171R: DCB 9 TO DMH 4

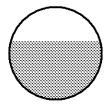
Inflow Are	a =	0.449 ac, 60.11% Impervious, Inflow Depth = 7.35" for cornell 100 even	ent
Inflow	=	3.21 cfs @ 12.13 hrs, Volume= 0.275 af	
Outflow	=	3.21 cfs @ 12.13 hrs, Volume= 0.275 af, Atten= 0%, Lag= 0.0 n	nin

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.39 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.26 fps, Avg. Travel Time= 0.1 min

Peak Storage= 4 cf @ 12.13 hrs Average Depth at Peak Storage= 0.61' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.66 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 7.0' Slope= 0.0171 '/' Inlet Invert= 80.27', Outlet Invert= 80.15'




## Summary for Reach 172R: DMH 4 HYDRO3

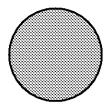
Inflow Area	a =	4.380 ac, 16.32% Impervious, Inflow	Depth = 5.93"	for cornell 100 event
Inflow	=	13.70 cfs @ 12.18 hrs, Volume=	2.165 af	
Outflow	=	13.73 cfs @ 12.19 hrs, Volume=	2.165 af, Atte	en= 0%, Lag= 0.4 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.56 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.58 fps, Avg. Travel Time= 0.3 min

Peak Storage= 105 cf @ 12.19 hrs Average Depth at Peak Storage= 1.26' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 18.93 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 50.0' Slope= 0.0070 '/' Inlet Invert= 79.05', Outlet Invert= 78.70'




## Summary for Reach 173R: CB 6 TO HYDRO 4

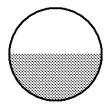
Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 6.87" for cornell 100 event
Inflow =	2.72 cfs @ 12.09 hrs, Volume=	0.203 af
Outflow =	2.54 cfs @ 12.14 hrs, Volume=	0.203 af, Atten= 7%, Lag= 3.5 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.44 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 0.6 min

Peak Storage= 36 cf @ 12.10 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.38 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 45.0' Slope= 0.0044 '/' Inlet Invert= 97.50', Outlet Invert= 97.30'




## Summary for Reach 174R: HYDRO 4 TO CHAMBERS 2

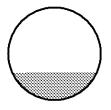
Inflow Area =	0.354 ac, 42.77% Impervious, Inflow D	epth = 6.87" for cornell 100 event
Inflow =	2.54 cfs @ 12.14 hrs, Volume=	0.203 af
Outflow =	2.54 cfs @ 12.14 hrs, Volume=	0.203 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.39 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.21 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.14 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 97.30', Outlet Invert= 97.20'




## Summary for Reach 175R: CB 10 TO DMH 7

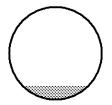
Inflow Area =	0.160 ac, 50.59% Impervious, Inflow E	Depth = 7.11" for cornell 100 event
Inflow =	1.26 cfs @ 12.09 hrs, Volume=	0.095 af
Outflow =	1.26 cfs @ 12.09 hrs, Volume=	0.095 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 6.27 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.06 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'




## Summary for Reach 178R: CB 11 TO DMH 7

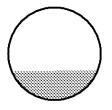
Inflow Area	a =	0.038 ac,10	0.00% Impe	ervious,	Inflow Dept	th = 3	8.56"	for co	rnell 100 event
Inflow	=	0.32 cfs @	12.08 hrs,	Volume	= 0	.027 a	af		
Outflow	=	0.32 cfs @	12.08 hrs,	Volume	= 0	.027 a	af, Atte	ə <b>n= 0</b> %,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.08 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 14.0' Slope= 0.0314 '/' Inlet Invert= 84.79', Outlet Invert= 84.35'




## Summary for Reach 179R: DMH 7 TO DMH 6

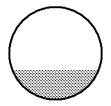
Inflow Area	a =	0.198 ac, 59.96% Impervious, Inflow De	epth = 7.38" for cornell 100 event
Inflow	=	1.58 cfs @ 12.09 hrs, Volume=	0.122 af
Outflow	=	1.58 cfs @ 12.09 hrs, Volume=	0.122 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 7.29 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.27 fps, Avg. Travel Time= 0.7 min

Peak Storage= 20 cf @ 12.09 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 93.0' Slope= 0.0400 '/' Inlet Invert= 84.25', Outlet Invert= 80.53'




## Summary for Reach 181R: HYDRO 1 TO CHAMB 1

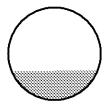
Inflow Area =	0.067 ac, 80.64% Impervious, Inflow D	Depth = 7.96" for cornell 100 event
Inflow =	0.55 cfs @ 12.09 hrs, Volume=	0.044 af
Outflow =	0.55 cfs @ 12.09 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.48 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.40 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0045 '/' Inlet Invert= 102.05', Outlet Invert= 102.00'




## Summary for Reach 182R: HYDRO 3 TO CHAMBERS 3

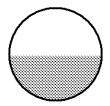
Inflow Area =	4.578 ac, 18.21% Impervi	ious, Inflow Depth = 5.99" for cornell 100 event
Inflow =	14.90 cfs @ 12.18 hrs, Vo	olume= 2.287 af
Outflow =	14.90 cfs @ 12.18 hrs, Vo	blume= 2.287 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 17.28 fps, Min. Travel Time= 0.0 min Avg. Velocity = 6.08 fps, Avg. Travel Time= 0.0 min

Peak Storage= 4 cf @ 12.18 hrs Average Depth at Peak Storage= 0.64' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 67.87 cfs

24.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0900 '/' Inlet Invert= 78.95', Outlet Invert= 78.50'




## Summary for Reach 183R: CB 12 TO DMH 5

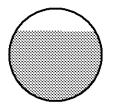
Inflow Area =	0.241 ac,	63.01% Impervious	Inflow Depth = 7.4	47" for cornell 100 event
Inflow =	1.96 cfs @	12.09 hrs, Volum	e= 0.150 af	
Outflow =	1.96 cfs @	12.09 hrs, Volum	e= 0.150 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 5.17 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 0.1 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.49' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.11 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 12.0' Slope= 0.0133 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'




## Summary for Reach 184R: HYDRO5 BASIN 4

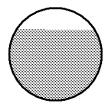
Inflow Are	a =	0.346 ac, 64.31% Impervious, Inflov	w Depth = 7.51"	for cornell 100 event
Inflow	=	2.54 cfs @ 12.10 hrs, Volume=	0.216 af	
Outflow	=	2.54 cfs @ 12.10 hrs, Volume=	0.216 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.98 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.44 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.10 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.76 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 5.0' Slope= 0.0060 '/' Inlet Invert= 78.53', Outlet Invert= 78.50'




## Summary for Reach 185R: DMH 6 TO HYDRO 3

Inflow Area =	0.198 ac, 59.96% Impervious, Inflow D	Depth = 7.38" for cornell 100 event
Inflow =	1.58 cfs @ 12.09 hrs, Volume=	0.122 af
Outflow =	1.58 cfs @ 12.09 hrs, Volume=	0.122 af, Atten= 0%, Lag= 0.2 min

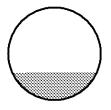
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 2.43 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.81 fps, Avg. Travel Time= 0.7 min

Peak Storage= 23 cf @ 12.09 hrs Average Depth at Peak Storage= 0.77' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.68 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 36.0' Slope= 0.0022 '/' Inlet Invert= 79.33', Outlet Invert= 79.25'



## Summary for Reach 186R: CB 13 TO DMH 5


Inflow Area =	0.105 ac, 67.31% Impervious, Inflow	Depth = 7.59"	for cornell 100 event
Inflow =	0.86 cfs @ 12.08 hrs, Volume=	0.067 af	
Outflow =	0.86 cfs @ 12.09 hrs, Volume=	0.067 af, Atte	en= 0%, Lag= 0.0 min

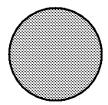
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 4.27 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 0.1 min

# oldoakenbucket2tTypPrepared by ANTHONY A. ESPOSITOHydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.30 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 11.0' Slope= 0.0145 '/' Inlet Invert= 79.05', Outlet Invert= 78.89'




## Summary for Reach 187R: DMH 5 TO HYDRO 5

Inflow Area =	0.346 ac, 64.31% Impervious, Inflow De	epth = 7.51" for cornell 100 event
Inflow =	2.82 cfs @ 12.09 hrs, Volume=	0.216 af
Outflow =	2.54 cfs @ 12.10 hrs, Volume=	0.216 af, Atten= 10%, Lag= 0.9 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 3.65 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 0.4 min

Peak Storage= 26 cf @ 12.10 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 32.0' Slope= 0.0050 '/' Inlet Invert= 78.79', Outlet Invert= 78.63'



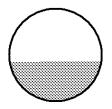
## Summary for Reach 195R: POST TO WETS

Inflow Area	a =	9.719 ac, 16.34% Impervious, Inflow	Depth = 5.49"	for cornell 100 event
Inflow	=	39.46 cfs @ 12.17 hrs, Volume=	4.445 af	
Outflow	=	39.46 cfs @ 12.17 hrs, Volume=	4.445 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

## Summary for Reach 245R: DMH 2 TO DMH 3

 Inflow Area =
 0.293 ac, 60.28% Impervious, Inflow Depth =
 7.40" for cornell 100 event


 Inflow =
 2.35 cfs @
 12.09 hrs, Volume=
 0.180 af

 Outflow =
 2.35 cfs @
 12.09 hrs, Volume=
 0.180 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Max. Velocity= 7.20 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.35 fps, Avg. Travel Time= 0.7 min

Peak Storage= 34 cf @ 12.09 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.06 cfs

12.0" Round Pipe n= 0.013 Concrete sewer w/manholes & inlets Length= 104.0' Slope= 0.0289 '/' Inlet Invert= 93.50', Outlet Invert= 90.49'



#### Summary for Pond 1P: unit 4

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 15.06 hrs, Volume=	0.025 af, Atten= 96%, Lag= 178.8 min
Discarded =	0.02 cfs @ 15.06 hrs, Volume=	0.025 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 99.68' @ 15.06 hrs Surf.Area= 0.007 ac Storage= 0.019 af

Plug-Flow detention time= 388.7 min calculated for 0.025 af (75% of inflow) Center-of-Mass det. time= 300.9 min (1,041.0 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	96.10'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.60'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	96.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 15.06 hrs HW=99.68' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 3P: unit7

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 103.58' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	99.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=103.58' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 14P: unit5

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 107.68' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	103.20'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	103.70'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap

6 Rows of 1 Chambers Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf			
0.018 af Total Available Storage			
DeviceRoutingInvertOutlet Devices#1Discarded103.20'1.020 in/hr Exfiltration over Wetted area			
Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=107.68' (Free Discharge) [↑] _1=Exfiltration (Exfiltration Controls 0.02 cfs)			
Summary for Pond 116P: CB 2			
Inflow Area =       0.192 ac, 53.87% Impervious, Inflow Depth = 7.23" for cornell 100 event         Inflow =       1.53 cfs @ 12.09 hrs, Volume=       0.116 af         Outflow =       1.53 cfs @ 12.09 hrs, Volume=       0.116 af, Atten= 0%, Lag= 0.0 min         Primary =       1.53 cfs @ 12.09 hrs, Volume=       0.116 af			
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.47' @ 12.09 hrs			
DeviceRoutingInvertOutlet Devices#1Primary95.91'18.0" Vert. Orifice/GrateC= 0.600			
Primary OutFlow Max=1.51 cfs @ 12.09 hrs HW=96.47' (Free Discharge)			
Summary for Pond 149P: CB 3			
Inflow Area =       0.100 ac, 72.55% Impervious, Inflow Depth = 7.72" for cornell 100 event         Inflow =       0.83 cfs @ 12.08 hrs, Volume=       0.065 af         Outflow =       0.83 cfs @ 12.08 hrs, Volume=       0.065 af, Atten= 0%, Lag= 0.0 min         Primary =       0.83 cfs @ 12.08 hrs, Volume=       0.065 af			
Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.31' @ 12.08 hrs			
DeviceRoutingInvertOutlet Devices#1Primary95.91'18.0" Vert. Orifice/GrateC= 0.600			
Primary OutFlow Max=0.82 cfs @ 12.08 hrs HW=96.31' (Free Discharge) [●] —1=Orifice/Grate (Orifice Controls 0.82 cfs @ 2.16 fps)			
Summary for Pond 156P: CB 5			

Inflow Area =	0.102 ac, 68.97% Impervious, Inflow D	epth = 7.72" for cornell 100 event
Inflow =	0.85 cfs @ 12.08 hrs, Volume=	0.066 af
Outflow =	0.85 cfs @ 12.08 hrs, Volume=	0.066 af, Atten= 0%, Lag= 0.0 min
Primary =	0.85 cfs @ 12.08 hrs, Volume=	0.066 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs

Peak Elev= 91.33' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.84 cfs @ 12.08 hrs HW=91.33' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.84 cfs @ 2.33 fps)

## Summary for Pond 159P: CB 5

Inflow Area =	0.232 ac, 52.88% Impervious, Inflow D	Depth = 7.23" for cornell 100 event
Inflow =	1.48 cfs @ 12.18 hrs, Volume=	0.140 af
Outflow =	1.48 cfs @ 12.18 hrs, Volume=	0.140 af, Atten= 0%, Lag= 0.0 min
Primary =	1.48 cfs @ 12.18 hrs, Volume=	0.140 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.51' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	90.86'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.46 cfs @ 12.18 hrs HW=91.50' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.46 cfs @ 2.73 fps)

## Summary for Pond 167P: DCB 8

Inflow Area =	3.931 ac, 11.32% Impervious, Inflow	Depth = 5.77" for cornell 100 event
Inflow =	15.89 cfs @ 12.36 hrs, Volume=	1.890 af
Outflow =	15.89 cfs @ 12.36 hrs, Volume=	1.890 af, Atten= 0%, Lag= 0.0 min
Primary =	15.89 cfs @ 12.36 hrs, Volume=	1.890 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 84.01' @ 12.36 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.77'	18.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=15.88 cfs @ 12.36 hrs HW=84.00' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 15.88 cfs @ 8.98 fps)

## Summary for Pond 168P: CB 1

Inflow Area =	0.067 ac, 80.64% Impervious, Inflow De	epth = 7.96" for cornell 100 event
Inflow =	0.55 cfs @ 12.09 hrs, Volume=	0.044 af
Outflow =	0.55 cfs @ 12.09 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.0 min
Primary =	0.55 cfs @ 12.09 hrs, Volume=	0.044 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 102.64' @ 12.09 hrs oldoakenbucket2tTypPrepared by ANTHONY A. ESPOSITOHydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Type III 24-hr cornell 100 Rainfall=8.80" Printed 12/12/2022 LLC Page 169

Device	Routing	Invert	Outlet Devices	
#1	Primary	102.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.54 cfs @ 12.09 hrs HW=102.64' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.54 cfs @ 2.07 fps)

## Summary for Pond 170P: DCB 9

Inflow Area	=	0.449 ac, 60.11% Impervious, Inflow Depth =	7.35" for cornell 100 event
Inflow :	=	3.21 cfs @ 12.13 hrs, Volume= 0.275	af
Outflow =	=	3.21 cfs @ 12.13 hrs, Volume= 0.275	af, Atten= 0%, Lag= 0.0 min
Primary :	=	3.21 cfs @ 12.13 hrs, Volume= 0.275	af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 81.49' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	80.27'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=3.16 cfs @ 12.13 hrs HW=81.47' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 3.16 cfs @ 4.03 fps)

## Summary for Pond 171P: CHAMBERS UNIT 1

Inflow Area =	0.112 ac, 88.52% Impervious, Inflow De	epth = 8.20" for cornell 100 event
Inflow =	0.94 cfs @ 12.09 hrs, Volume=	0.077 af
Outflow =	0.03 cfs @ 15.46 hrs, Volume=	0.057 af, Atten= 96%, Lag= 202.4 min
Discarded =	0.03 cfs @ 15.46 hrs, Volume=	0.057 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 101.90' @ 15.46 hrs Surf.Area= 0.023 ac Storage= 0.044 af

Plug-Flow detention time= 389.6 min calculated for 0.057 af (74% of inflow) Center-of-Mass det. time= 302.1 min (1,055.8 - 753.7)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.030 af	20.40'W x 49.50'L x 5.00'H Prismatoid
			0.116 af Overall - 0.042 af Embedded = 0.074 af x 40.0% Voids
#2	99.60'	0.042 af	Cultec R-902HD x 28 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			4 Rows of 7 Chambers
			Cap Storage= +2.8 cf x 2 x 4 rows = 22.1 cf
		0.072 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Discarded	99.10' <b>1.</b> 0	020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.03 cfs @ 15.46 hrs HW=101.90' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.03 cfs)

## Summary for Pond 174P: CB 10

Inflow Area =	0.160 ac, 50.59% Impervious, Inflow De	epth = 7.11" for cornell 100 event
Inflow =	1.26 cfs @ 12.09 hrs, Volume=	0.095 af
Outflow =	1.26 cfs @ 12.09 hrs, Volume=	0.095 af, Atten= 0%, Lag= 0.0 min
Primary =	1.26 cfs @ 12.09 hrs, Volume=	0.095 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 85.38' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices		
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600	

Primary OutFlow Max=1.25 cfs @ 12.09 hrs HW=85.38' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.25 cfs @ 2.61 fps)

## Summary for Pond 175P: CHAMBERS UNIT 2

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 6.87" for cornell 100 event
Inflow =	2.54 cfs @ 12.14 hrs, Volume=	0.203 af
Outflow =	0.07 cfs @ 16.84 hrs, Volume=	0.110 af, Atten= 97%, Lag= 281.8 min
Discarded =	0.07 cfs @ 16.84 hrs, Volume=	0.110 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 99.85' @ 16.84 hrs Surf.Area= 0.046 ac Storage= 0.134 af

Plug-Flow detention time= 430.7 min calculated for 0.110 af (54% of inflow) Center-of-Mass det. time= 321.8 min (1,112.1 - 790.3)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.056 af	28.78'W x 69.33'L x 5.00'H Prismatoid
			0.229 af Overall - 0.090 af Embedded = 0.139 af x 40.0% Voids
#2	96.00'	0.090 af	Cultec R-902HD x 60 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 10 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.146 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	95.50'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.07 cfs @ 16.84 hrs HW=99.85' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.07 cfs)

## Summary for Pond 176P: CB 6

Inflow Area =	0.354 ac, 42.77% Impervious, Inflow De	epth = 6.87" for cornell 100 event
Inflow =	2.72 cfs @ 12.09 hrs, Volume=	0.203 af
Outflow =	2.72 cfs @ 12.09 hrs, Volume=	0.203 af, Atten= 0%, Lag= 0.0 min
Primary =	2.72 cfs @ 12.09 hrs, Volume=	0.203 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 98.52' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	97.50'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=2.68 cfs @ 12.09 hrs HW=98.50' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 2.68 cfs @ 3.42 fps)

## Summary for Pond 177P: CB 11

Inflow Area =	0.038 ac,100.00% Impervious, Inflow	Depth = 8.56" for cornell 100 event
Inflow =	0.32 cfs @ 12.08 hrs, Volume=	0.027 af
Outflow =	0.32 cfs @ 12.08 hrs, Volume=	0.027 af, Atten= 0%, Lag= 0.0 min
Primary =	0.32 cfs @ 12.08 hrs, Volume=	0.027 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 85.07' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	84.79'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.32 cfs @ 12.08 hrs HW=85.07' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.32 cfs @ 1.79 fps)

#### Summary for Pond 178P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 15.06 hrs, Volume=	0.025 af, Atten= 96%, Lag= 178.8 min
Discarded =	0.02 cfs @15.06 hrs, Volume=	0.025 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 99.08' @ 15.06 hrs Surf.Area= 0.007 ac Storage= 0.019 af

Plug-Flow detention time= 388.7 min calculated for 0.025 af (75% of inflow) Center-of-Mass det. time= 300.9 min (1,041.0 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

Discarded OutFlow Max=0.02 cfs @ 15.06 hrs HW=99.08' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 182P: CB 12

Inflow Area =	0.241 ac, 63.01% Impervious, Inflow D	epth = 7.47" for cornell 100 event
Inflow =	1.96 cfs @ 12.09 hrs, Volume=	0.150 af
Outflow =	1.96 cfs @12.09 hrs, Volume=	0.150 af, Atten= 0%, Lag= 0.0 min
Primary =	1.96 cfs @ 12.09 hrs, Volume=	0.150 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.82' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=1.93 cfs @ 12.09 hrs HW=79.82' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 1.93 cfs @ 2.98 fps)

#### Summary for Pond 185P: CB 13

Inflow Area =	0.105 ac, 67.31% Impervious, Inflow D	epth = 7.59" for cornell 100 event
Inflow =	0.86 cfs @ 12.08 hrs, Volume=	0.067 af
Outflow =	0.86 cfs @12.08 hrs, Volume=	0.067 af, Atten= 0%, Lag= 0.0 min
Primary =	0.86 cfs @ 12.08 hrs, Volume=	0.067 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.52' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	79.05'	12.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=0.85 cfs @ 12.08 hrs HW=79.52' (Free Discharge) [↑] 1=Orifice/Grate (Orifice Controls 0.85 cfs @ 2.34 fps)

#### Summary for Pond 190P: CHAMBERS UNIT 4

Inflow Area =	4.924 ac, 21.44% Impervious, Inflow D	epth = 6.10" for cornell 100 event
Inflow =	17.23 cfs @ 12.16 hrs, Volume=	2.503 af
Outflow =	16.71 cfs @ 12.19 hrs, Volume=	2.452 af, Atten= 3%, Lag= 1.9 min
Discarded =	0.06 cfs @ 12.19 hrs, Volume=	0.102 af
Primary =	16.65 cfs @ 12.19 hrs, Volume=	2.350 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.61' @ 12.19 hrs Surf.Area= 0.039 ac Storage= 0.121 af

Plug-Flow detention time= 30.8 min calculated for 2.452 af (98% of inflow) Center-of-Mass det. time= 18.5 min (836.6 - 818.1) oldoakenbucket2t

 Type III 24-hr cornell 100 Rainfall=8.80"

 Printed 12/12/2022

 LC
 Page 173

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description	
#1	76.00'	0.045 af	24.50'W x 69.00'L x 5.00'H Prismatoid	
			0.194 af Overall - 0.082 af Embedded = 0.112 af x 40.0% Voids	
#2	76.50'	0.082 af	Cultec R-902HD x 55 Inside #1	
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf	
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap	
			5 Rows of 11 Chambers	
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf	
		0.127 af	Total Available Storage	
Device	Routing	Invert Ou	tlet Devices	
#1	Discarded	76.00' <b>1.0</b>	20 in/hr Exfiltration over Wetted area	
#2	Primary	78.40' <b>24.</b>	.0" Vert. Orifice/Grate C= 0.600	

Discarded OutFlow Max=0.06 cfs @ 12.19 hrs HW=80.60' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=16.58 cfs @ 12.19 hrs HW=80.60' (Free Discharge) ←2=Orifice/Grate (Orifice Controls 16.58 cfs @ 5.28 fps)

## Summary for Pond 193P: CHAMBERS UNIT 3

Inflow Area =	0.672 ac, 61.75% Impervious, Inflow De	epth = 7.47" for cornell 100 event
Inflow =	3.18 cfs @ 12.08 hrs, Volume=	0.418 af
Outflow =	2.10 cfs @ 12.51 hrs, Volume=	0.332 af, Atten= 34%, Lag= 25.8 min
Discarded =	0.08 cfs @ 12.51 hrs, Volume=	0.135 af
Primary =	2.02 cfs @ 12.51 hrs, Volume=	0.197 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.78' @ 12.51 hrs Surf.Area= 0.057 ac Storage= 0.176 af

Plug-Flow detention time= 204.6 min calculated for 0.331 af (79% of inflow) Center-of-Mass det. time= 128.6 min (907.5 - 778.9)

Volume	Invert	Avail.Storage	Storage Description
#1	87.10'	0.066 af	43.00'W x 57.30'L x 5.00'H Prismatoid
			0.283 af Overall - 0.117 af Embedded = 0.166 af x 40.0% Voids
#2	87.60'	0.117 af	Cultec R-902HD x 78 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 13 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.183 af	Total Available Storage
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	87.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
#2	Primary	90.00' <b>8.0</b>	" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.08 cfs @ 12.51 hrs HW=91.77' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=2.01 cfs @ 12.51 hrs HW=91.77' (Free Discharge) [↑] 2=Orifice/Grate (Orifice Controls 2.01 cfs @ 5.77 fps)

#### Summary for Pond 197P: unit6

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 103.58' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	99.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	99.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 99.10' 1.020 in/hr Exfiltrat
-------------------------------------------

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=103.58' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

#### Summary for Pond 198P: unit8

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.45 hrs, Volume=	0.028 af, Atten= 95%, Lag= 142.0 min
Discarded =	0.02 cfs @ 14.45 hrs, Volume=	0.028 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.43' @ 14.45 hrs Surf.Area= 0.009 ac Storage= 0.017 af

Plug-Flow detention time= 358.8 min calculated for 0.028 af (87% of inflow) Center-of-Mass det. time= 298.8 min (1,038.8 - 740.1) oldoakenbucket2t

 Type III 24-hr cornell 100 Rainfall=8.80"

 Printed 12/12/2022

 LC
 Page 175

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	94.10'	0.013 af	8.50'W x 47.10'L x 4.50'H Prismatoid
			0.041 af Overall - 0.010 af Embedded = 0.032 af x 40.0% Voids
#2	94.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= $+2.8$ cf x 2 x 6 rows = 33.1 cf
		0.022 af	Total Available Storage
<b>_</b> .			
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	94.10' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.02 cfs @ 14.45 hrs HW=97.43' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

## Summary for Pond 202P: unit9

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 95.08' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	90.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	91.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	90.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=95.08' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 204P: unit10

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 94.08' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	89.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	90.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			<u> </u>

Device	Routing	Invert	Outlet Devices
#1	Discarded	89.60'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.02 cfs @ 14.61 hrs HW=94.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

## Summary for Pond 206P: unit11

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.28' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	92.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	93.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Discarded	92.80' <b>1.0</b>	020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=97.28' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

#### Summary for Pond 209P: unit12

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 97.98' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	93.50'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	94.00'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 93.50' 1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=97.98' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 219P: unit13

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 96.28' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	91.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	92.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

#### oldoakenbucket2t

 Type III 24-hr cornell 100 Rainfall=8.80"

 Printed 12/12/2022

 LC
 Page 178

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	91.80'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=96.28' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

#### Summary for Pond 222P: unit14

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.48' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	87.00'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	87.50'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	87.00'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.02 cfs @ 14.61 hrs HW=91.48' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

## Summary for Pond 230P: unit15

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 91.48' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1) oldoakenbucket2t

 Type III 24-hr cornell 100 Rainfall=8.80"

 Printed 12/12/2022

 LC
 Page 179

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	87.00'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	87.50'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	87.00' <b>1.0</b>	20 in/hr Exfiltration over Wetted area
Discarde	d OutFlow N	/ax=0.02 cfs <i>ത</i>	14.61 hrs HW=91.48' (Free Discharge)
		iltration Controls	
		Su.	Immary for Pond 231P: unit16
		30	initialy for Fond 25 F. unit 10
Inflow Ar	ea = 0.	046 ac,100.00%	Impervious, Inflow Depth = 8.56" for cornell 100 event
nflow		39 cfs @ 12.08	,
Outflow		02 cfs @ 14.61	· · · ·
Discarde	ed = 0.0	02 cfs @ 14.61	hrs, Volume= 0.026 af
Routing I	by Stor-Ind m	ethod, Time Spa	n= 0.00-29.00 hrs, dt= 0.04 hrs
Peak Ele	v= 86.08' @ ′	14.61 hrs Surf.	Area= 0.007 ac Storage= 0.018 af
			calculated for 0.026 af (80% of inflow)
Center-o	f-Mass det. til	me= 300.9 min (	1,040.9 - 740.1 )
Volume	Invert	Avail.Storage	Storage Description
#1	81.60'	0.008 af	
	01.00	0.000 ai	0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	82.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf

0.018 af Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	81.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=86.08' (Free Discharge) ☐1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 232P: unit17

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 83.28' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	78.80'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	79.30'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			<u> </u>

Device	Routing	Invert	Outlet Devices
#1	Discarded	78.80'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.02 cfs @ 14.61 hrs HW=83.28' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

## Summary for Pond 233P: unit18

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 79.38' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	74.90'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	75.40'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Discarded	74.90' <b>1.0</b>	020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=79.38' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

#### Summary for Pond 240P: unit19

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 80.78' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	76.30'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	76.80'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-
Device	Routing	Invert Ou	tlet Devices

#1 Discarded 76.30' 1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=80.78' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 241P: unit20

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 81.58' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	77.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	77.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

#### oldoakenbucket2t

 Type III 24-hr cornell 100 Rainfall=8.80"

 Printed 12/12/2022

 LC
 Page 182

Prepared by ANTHONY A. ESPOSITO HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	77.10'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=81.58' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

#### Summary for Pond 242P: unit21

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 84.58' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	80.10'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	80.60'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	80.10'	1.020 in/hr Exfiltration over Wetted area

**Discarded OutFlow** Max=0.02 cfs @ 14.61 hrs HW=84.58' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

## Summary for Pond 243P: unit22

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 86.08' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1) oldoakenbucket2t

Prepared by ANTHONY A. ESPOSITO

 Type III 24-hr cornell 100 Rainfall=8.80"

 Printed 12/12/2022

 LC
 Page 183

HydroCAD® 10.00-13 s/n 01291 © 2014 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1	81.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	82.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage
			-

Device	Routing	Invert	Outlet Devices
#1	Discarded	81.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=86.08' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 244P: unit23

Inflow Area =	0.046 ac,100.00% Impervious, Inflow De	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af, Atten= 96%, Lag= 151.8 min
Discarded =	0.02 cfs @ 14.61 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 86.08' @ 14.61 hrs Surf.Area= 0.007 ac Storage= 0.018 af

Plug-Flow detention time= 379.1 min calculated for 0.026 af (80% of inflow) Center-of-Mass det. time= 300.9 min (1,040.9 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	81.60'	0.008 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.010 af Embedded = 0.021 af x 40.0% Voids
#2	82.10'	0.010 af	Cultec R-902HD x 6 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			6 Rows of 1 Chambers
			Cap Storage= +2.8 cf x 2 x 6 rows = 33.1 cf
		0.018 af	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Discarded	81.60'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 14.61 hrs HW=86.08' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 245P: unit 1

Inflow Area =	0.046 ac,100.00% Impervious, Inflow D	epth = 8.56" for cornell 100 event
Inflow =	0.39 cfs @ 12.08 hrs, Volume=	0.033 af
Outflow =	0.02 cfs @ 15.06 hrs, Volume=	0.025 af, Atten= 96%, Lag= 178.8 min
Discarded =	0.02 cfs @ 15.06 hrs, Volume=	0.025 af

Routing by Stor-Ind method, Time Span= 0.00-29.00 hrs, dt= 0.04 hrs Peak Elev= 101.58' @ 15.06 hrs Surf.Area= 0.007 ac Storage= 0.019 af

Plug-Flow detention time= 388.7 min calculated for 0.025 af (75% of inflow) Center-of-Mass det. time= 300.9 min (1,041.0 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1	98.00'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	98.50'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices

#1	Discarded	98.00'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 15.06 hrs HW=101.58' (Free Discharge) [↑] 1=Exfiltration (Exfiltration Controls 0.02 cfs)

## Summary for Pond 246P: unit 1

Volume	Invert	Avail.Storage	Storage Description
#1	95.50'	0.006 af	7.10'W x 42.00'L x 4.50'H Prismatoid
			0.031 af Overall - 0.016 af Embedded = 0.014 af x 40.0% Voids
#2	96.00'	0.016 af	Cultec R-902HD x 11 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			Cap Storage= +2.8 cf x 2 x 1 rows = 5.5 cf
		0.022 af	Total Available Storage
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	95.50' <b>1.0</b>	20 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge) [↑] 1=Exfiltration (Controls 0.00 cfs)

The Cottages at Old Oaken Bucket 279-281 Old Oaken Bucket Rd., Scituate MA Date: December 12th 2022 Calculated by: TE South Shore Survey Consultants, Inc. Page 1 of 2

## **Groundwater Recharge and Water Quality Calculations**

The Cottages at Old Oaken Bucket Scituate, Massachusetts

#### Groundwater Recharge

Stormwater Management Standard #3

The prescribed stormwater runoff volume to be recharged to groundwater has been determined using the existing site (pre-development) soil conditions from the U.S. Natural Resources Conservation Service NRCS, (formerly SCS) County Web Soils Survey.

Soil Hydrologic group, "C" Required Infiltration Capacity = 0.25" Watershed Area= 11.53 Acres total for the watershed analyzed Existing Impervious Area = 0.45 Acres Proposed impervious area = 2.55 Acres Net impervious area = 2.10

Required Infiltration Volume= (0.25"/12"/ft) x (2.10 Acres) = 0.044 acf required 24 x 0.022 acf =0.528 acf provided in all chambers for the roofs of units

> Chambers Unit 1=0.072 acf Chambers Unit 2=0.146 acf

Total provided=0.746 acf without outlets

```
Drawdown calculations
```

chambers for roofs of units= (0.25"/12"/ft) x (1,992 sf)=41.5 cf

Drawdown = 41.5 cf / (1.02 in/hr x 298.2 sf x 1/12) = 1.7 hr per unit

To chamber unit 1= (0.25"/12"/ft) x (0.10 ac) x 43,560sf/ac=90.8 cf

Drawdown = 90.8 cf/(1.02 in/hr x 1,009.8 sf x 1/12) = 1.1 hr

To chamber unit 2= (0.25"/12"/ft) x (0.16 ac} x 43,560 sf/ac)=145.2 cf

Drawdown = 145.2 cf/(1.02in/hr x 1,991.9 sf x 1/12) = 0.9 hr

To chamber unit 3= (0.25"/12"/ft) x (0.42 ac) x 43,560 sf/ac=381.2 cf

Drawdown = 381.2 cf /(1.02 in/hr x 2,463.9 sf x 1/12) = 1.9 hr

To chamber unit 4= (0.25"/12"/ft) x (1.06 acs) x 43,560 sf/ac=962 cf

Drawdown = 962 cf /(1.02 in/hr x 1,849.7 sf x 1/12) = 6.2 hr

The Cottages at Old Oaken Bucket 279-281 Old Oaken Bucket Rd., Scituate MA Date: December 12th 2022 Calculated by: TE South Shore Survey Consultants, Inc. Page 2 of 2

Water Quality Stormwater Management Standard - General

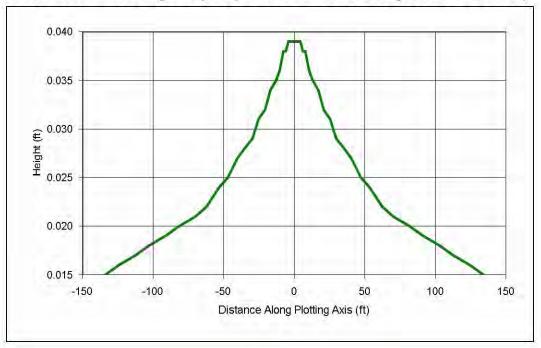
"Containment and treatment of the first inch (first flush) of runoff during a rainfall event is a reasonably effective practice for controlling contaminants in stormwater."

See Calculations from storm treatment unit provider

#### SOUTH SHORE SURVEY CONSULTANTS INC. 167R SUMMER ST. **KINGSTON, MA**

279-281 12/12/2022 Location: Date: STREET: OLD OAKEN BUCKET RD., SCITUATE M/ Revised: Computed By: AAE Project No.: 1908.00 Checked By:

#### MOUNDING CALCULATION INPUTS


CALCULATIONS BASED ON HANTUSH METHOD

chamber 1

DAY

0.09 CF/DAY/SF
24 HOURS
0.2 STANDARD
30 FT/DAY
49.50 Ft
20.4 Ft
134 Ft
90 DEGREES
48 FT max. on-site

- APPLICATION RATE= / _1___ 91 CF DESIGN FLOW I 1,010 SF = 0.09 CF/DAY/SF HYDRAULIC CONDUCTIVITY= 30 FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
  - FROM "MASSGIS" ELEVATION OF BEDROCK= 50
    - DEPTH OF WATER= 2 max. on-site
  - SATURATED THICKNESS= 48



Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

COMPANY SOLITH SHORE SURVEY CONS		MODEL	RESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGES cham1 ANALYST: ANTHONY ESPOSITO DATE: 12/11/2022 TIME: 9:55:35 PM INPUT PARAMETERS Application rate: 0.09 c.ft/hour/sq. ft Duration of application: 24 hours Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour	X (ft) -134 -112.7 -91.4 -70.1 -53.3 -40.3 -29.7 -20.8 -13	MODEL Y (ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RESULTS Plot Axis (ft) -134 -113 -91 -70 -53 -40 -30 -21 -13	Mound Height (ft) 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03
Initial saturated thickness: 48 ft Length of application area: 49.5 ft Width of application area: 20.4 ft No constant head boundary used Plotting axis from Y-Axis: 90 degrees Edge of recharge area: positive X: 10.2 ft positive Y: 0 ft Total volume applied: 2181.168 c.ft	-7.8 -4.2 0 4.2 7.8 13 20.8 29.7 40.3 53.3 70.1 91.4 112.7 134		-8 -4 0 4 8 13 21 30 40 53 70 91 113 134	0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03

#### SOUTH SHORE SURVEY CONSULTANTS INC. 167R SUMMER ST. KINGSTON, MA

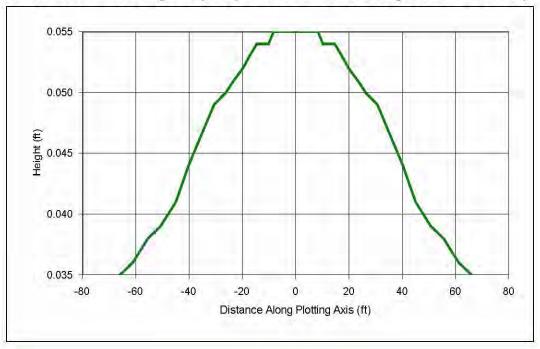
 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:

#### MOUNDING CALCULATION INPUTS


CALCULATIONS BASED ON HANTUSH METHOD

chamber 2

APPLICATION RATE= DURATION=	0.07 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	69.33 Ft
WIDTH OF APPLICATION=	28.8 Ft
CONSTANT HEAD BOUNDARY=	66 Ft
PLOTTING AXIS=	0 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

APPLICATION RATE=

146	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 1,997 SF
=	0.07	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



T

Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGES cham2 ANALYST: ANTHONY ESPOSITO DATE: 12/11/2022 TIME: 9:57:40 PM INPUT PARAMETERS Application rate: 0.07 c.ft/hour/sq. ft Duration of application: 24 hours Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft Length of application area: 69.33 ft Width of application area: 28.8 ft No constant head boundary used Plotting axis from Y-Axis: 0 degrees Edge of recharge area: positive X: 0 ft positive Y: 34.7 ft Total volume applied: 3354.463 c.ft	X (ft)	MODEL R Y (ft) -66 -55.5 -45 -34.5 -26.3 -19.9 -14.6 -10.2 -6.4 -3.8 -2.1 0 2.1 3.8 6.4 10.2 14.6 19.9 26.3 34.5 45 55.5	ESULTS Plot Axis (ft) -66 -56 -45 -35 -26 -20 -15 -10 -6 -4 -2 0 2 4 6 10 15 20 26 35 45 56	Mound Height (ft) 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05
	0	66	66	0.04

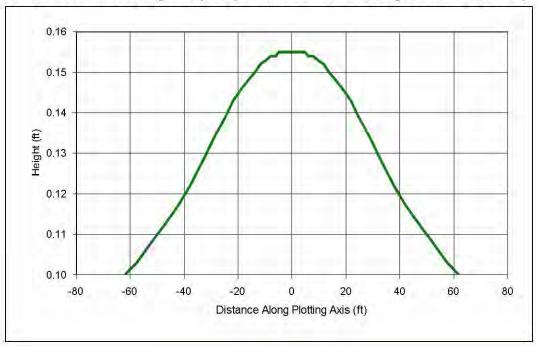
#### SOUTH SHORE SURVEY CONSULTANTS INC. 167R SUMMER ST. KINGSTON, MA

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


#### MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

chamber 3

APPLICATION RATE=	0.16 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	57.30 Ft
WIDTH OF APPLICATION=	43 Ft
CONSTANT HEAD BOUNDARY=	62 Ft
PLOTTING AXIS=	45 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

APPLICATION RATE=		
382	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 2,464 SF
=	0.16	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

COMPANY' SOLITH SHORE SURVEY CONS		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGES cham3 ANALYST: ANTHONY ESPOSITO DATE: 12/11/2022 TIME: 9:59:52 PM INPUT PARAMETERS Application rate: 0.16 c.ft/hour/sq. ft Duration of application: 24 hours Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft Longth of application area: 57.3 ft	X (ft) -43.8 -36.9 -29.9 -22.9 -17.4 -13.2 -9.7 -6.8 -4.2 -2.5 1.4	Y (ft) -43.8 -36.9 -29.9 -22.9 -17.4 -13.2 -9.7 -6.8 -4.2 -2.5	Plot Axis (ft) -62 -52 -42 -32 -25 -19 -14 -10 -6 -4	Mound Height (ft) 0.1 0.11 0.12 0.13 0.14 0.15 0.15 0.15 0.15 0.16 0.16
Length of application area: 57.3 ft Width of application area: 43 ft No constant head boundary used Plotting axis from Y-Axis: 45 degrees Edge of recharge area: positive X: 21.5 ft positive Y: 21.5 ft Total volume applied: 9461.376 c.ft	-1.4 0 1.4 2.5 4.2 6.8 9.7 13.2 17.4 22.9 29.9 36.9 43.8	-1.4 0 1.4 2.5 4.2 6.8 9.7 13.2 17.4 22.9 29.9 36.9 43.8	-2 0 2 4 6 10 14 19 25 32 42 52 62	0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.12 0.11 0.1

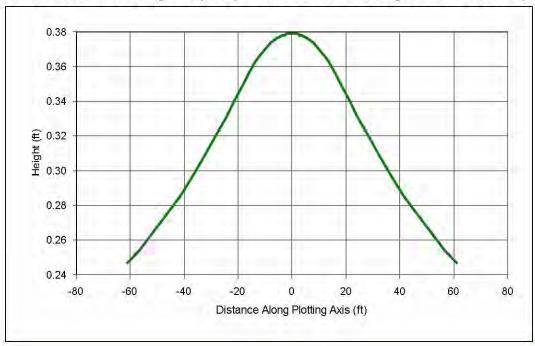
#### SOUTH SHORE SURVEY CONSULTANTS INC. 167R SUMMER ST. KINGSTON, MA

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


#### MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

chamber 4

APPLICATION RATE= DURATION=	0.52 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	75.50 Ft
WIDTH OF APPLICATION=	24.5 Ft
CONSTANT HEAD BOUNDARY=	61 Ft
PLOTTING AXIS=	45 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

APPLICATION RATE=		
962	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 1,850 SF
=	0.52	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

COMPANY: SOUTH SHORE SURVEY CONS.		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGES cham4 ANALYST: ANTHONY ESPOSITO DATE: 12/11/2022 TIME: 10:02:03 PM	X (ft) -43.1 -36.3	Y (ft) -43.1 -36.3	Plot Axis (ft) -61 -51	Mound Height (ft) 0.25 0.26
INPUT PARAMETERS	-29.4 -22.6 -17.2	-29.4 -22.6 -17.2	-42 -32 -24	0.28 0.31 0.33
Application rate: 0.52 c.ft/hour/sq. ft Duration of application: 24 hours Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft Length of application area: 75.6 ft Width of application area: 24.5 ft No constant head boundary used Plotting axis from Y-Axis: 45 degrees Edge of recharge area:	-13 -9.6 -6.7 -4.2 -2.5 -1.4 0 1.4 2.5 4.2	-13 -9.6 -6.7 -4.2 -2.5 -1.4 0 1.4 2.5 4.2	-24 -18 -14 -9 -6 -4 -2 0 2 4 6 9	0.35 0.36 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
positive X: 12.2 ft positive Y: 12.3 ft Total volume applied: 23115.46 c.ft	6.7 9.6 13 17.2 22.6 29.4 36.3 43.1	6.7 9.6 13 17.2 22.6 29.4 36.3 43.1	9 14 18 24 32 42 51 61	0.37 0.36 0.35 0.33 0.31 0.28 0.26 0.25

#### SOUTH SHORE SURVEY CONSULTANTS INC. 167R SUMMER ST. KINGSTON, MA

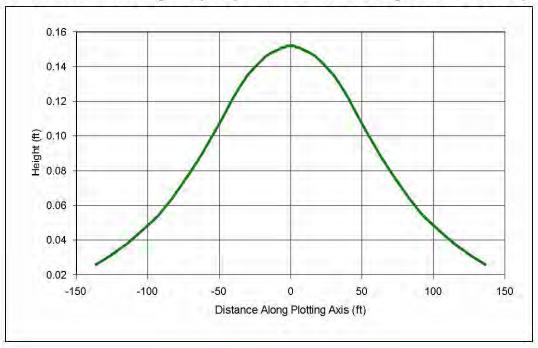
 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:

#### MOUNDING CALCULATION INPUTS


CALCULATIONS BASED ON HANTUSH METHOD

septic

APPLICATION RATE= DURATION=	0.12 CF/DAY/SF 24 HOURS
FILLABLE POROSITY= HYDRAULIC CONDUCTIVITY=	0.2 STANDARD 30 FT/DAY
LENGTH OF APPLICATION=	62.00 Ft
WIDTH OF APPLICATION=	141.5 Ft
CONSTANT HEAD BOUNDARY=	136 Ft
PLOTTING AXIS=	45 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

APPLICATION RATE=

1,059	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 8,773 SF
=	0.12	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGE SEPTIC SYSTEM ANALYST: ANTHONY ESPOSITO DATE: 12/11/2022 TIME: 9:02:36 PM INPUT PARAMETERS Application rate: 0.12 c.ft/year/sq. ft Duration of application: 1 years Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/year Initial saturated thickness: 48 ft Length of application area: 62 ft Width of application area: 141.5 ft No constant head boundary used Plotting axis from Y-Axis: 45 degrees Edge of recharge area: positive X: 31 ft positive Y: 31 ft	X (ft) -96.2 -80.9 -65.6 -50.3 -38.3 -28.9 -21.3 -14.9 -9.3 -5.6 -3 0 3 5.6 9.3 14.9 21.3	MODEL R Y (ft) -96.2 -80.9 -65.6 -50.3 -38.3 -28.9 -21.3 -14.9 -9.3 -5.6 -3 0 3 5.6 9.3 14.9 21.3	Plot Axis (ft) -136 -114 -93 -71 -54 -41 -30 -21 -13 -8 -4 0 4 8 13 21 30	Mound Height (ft) 0.03 0.04 0.05 0.08 0.1 0.12 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
positive Y: 31 ft	28.9	28.9	41	0.12
Total volume applied: 1052.76 c.ft	38.3	38.3	54	0.1
positive Y: 31 ft	21.3	21.3	30	0.14
	28.9	28.9	41	0.12
	38.3	38.3	54	0.1
	50.3	50.3	71	0.08
	65.6	65.6	93	0.05
	80.9	80.9	114	0.04
	96.2	96.2	136	0.03

#### SOUTH SHORE SURVEY CONSULTANTS INC. 167R SUMMER ST. KINGSTON, MA

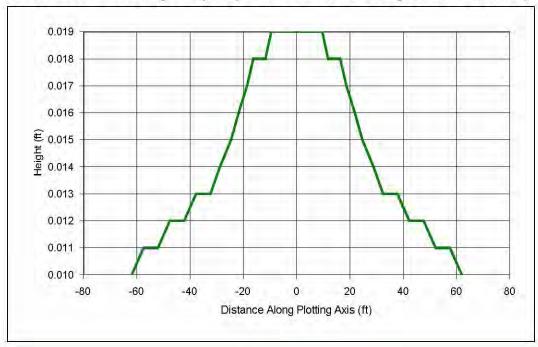
 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:

#### MOUNDING CALCULATION INPUTS


#### CALCULATIONS BASED ON HANTUSH METHOD

UNIT 1

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	62 Ft
PLOTTING AXIS=	0 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

APPLICATION RATE=

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



## Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

#### SOUTH SHORE SURVEY CONSULTANTS INC. 167R SUMMER ST. KINGSTON, MA

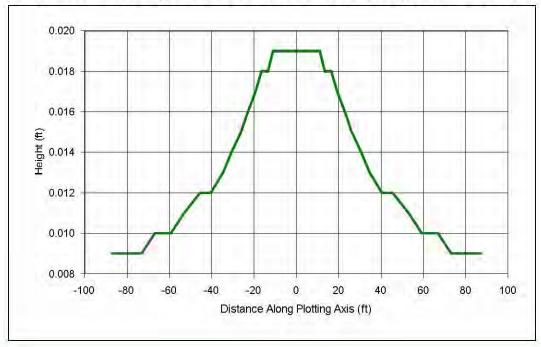
 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:

#### MOUNDING CALCULATION INPUTS


CALCULATIONS BASED ON HANTUSH METHOD

UNIT 2

0.14 CF/DAY/SF
24 HOURS
0.2 STANDARD
30 FT/DAY
42.00 Ft
7.1 Ft
87 Ft
0 DEGREES
48 FT max. on-site

APPLICATION RATE=

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF / DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGES U2	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: ANTHONY ESPOSITO DATE: 12/11/2022 TIME: 11:09:04 PM INPUT PARAMETERS Application rate: 0.14 c.ft/hour/sq. ft Duration of application: 24 hours Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft Length of application area: 42 ft Width of application area: 7.1 ft No constant head boundary used Plotting axis from Y-Axis: 0 degrees Edge of recharge area: positive X: 0 ft positive Y: 21 ft Total volume applied: 1001.952 c.ft	(ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(ft) -87 -73.2 -59.3 -45.5 -34.6 -26.2 -19.3 -13.5 -8.4 -5 -2.7 0 2.7 5 8.4 13.5 19.3 26.2 34.6 45.5	(ft) -87 -73 -59 -45 -35 -26 -19 -13 -8 -5 -3 0 3 5 8 13 19 26 35 45	(ft) 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
	0 0 0	59.3 73.2 87	59 73 87	0.01 0.01 0.01

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:

## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 4

APPLICATION RATE= DURATION=	0.14 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	53 Ft
PLOTTING AXIS=	10 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



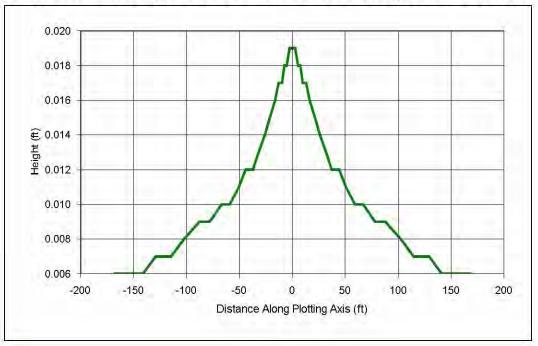
COMPANY SOUTH SHORE SURVEY CONS		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGES U4 ANALYST: ANTHONY ESPOSITO DATE: 12/11/2022 TIME: 9:20:17 PM INPUT PARAMETERS Application rate: 0.14 c.ft/hour/sq. ft	X (ft) 0 0 0 0	Y (ft) -53 -44.6 -36.1 -27.7 -21.1 -16	Plot Axis (ft) -53 -45 -36 -28 -21 -16	Mound Height (ft) 0.01 0.01 0.01 0.01 0.02 0.02
Duration of application: 24 hours Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft Length of application area: 42 ft Width of application area: 7.1 ft No constant head boundary used Plotting axis from Y-Axis: 0 degrees Edge of recharge area:		-11.8 -8.2 -5.1 -3.1 -1.7 0 1.7 3.1 5.1	-12 -8 -5 -3 -2 0 2 3 5	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
positive X: 0 ft positive Y: 21 ft Total volume applied: 1001.952 c.ft		8.2 11.8 16 21.1 27.7 36.1 44.6 53	8 12 16 21 28 36 45 53	0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 5

APPLICATION RATE= DURATION=	0.14 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	168 Ft
PLOTTING AXIS=	45 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



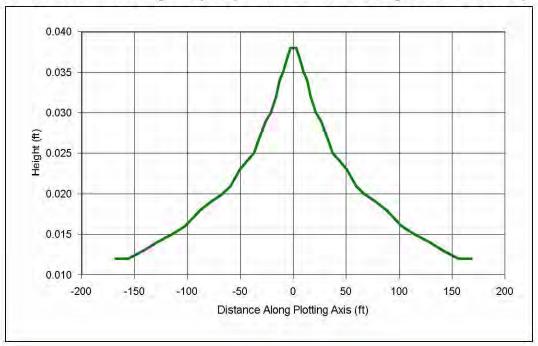
COMPANY: SOUTH SHORE SURVEY CONS.		MODELR	ESULTS	
COMPANY. COOTTOHORE CORVET CONS.			Plot	Mound
PROJECT: THE COTTAGES U5	х	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: ANTHONY ESPOSITO	77	12	1.4	()
	-118.8	-118.8	-168	0.01
DATE: 12/11/2022 TIME: 9:23:57 PM	-99.9	-99.9	-141	0.01
	-81	-81	-115	0.01
INPUT PARAMETERS	-62.1	-62.1	-88	0.01
	-47.3	-47.3	-67	0.01
Application rate: 0.14 c.ft/hour/sq. ft	-35.8	-35.8	-51	0.01
Duration of application: 24 hours	-26.3	-26.3	-37	0.01
Fillable porosity: 0.2	-18.4	-18.4	-26	0.01
Hydraulic conductivity: 30 ft/hour	-11.5	-11.5	-16	0.02
Initial saturated thickness: 48 ft	-6.9	-6.9	-10	0.02
Length of application area: 42 ft	-3.7	-3.7	-5	0.02
Width of application area: 7.1 ft	0	0	0	0.02
No constant head boundary used	3.7	3.7	5	0.02
Plotting axis from Y-Axis: 45 degrees	6.9	6.9	10	0.02
Edge of recharge area:	11.5	11.5	16	0.02
positive X: 3.6 ft	18.4	18.4	26	0.01
positive Y: 3.6 ft	26.3	26.3	37	0.01
Total volume applied: 1001.952 c.ft	35.8	35.8	51	0.01
	47.3	47.3	67	0.01
	62.1	62.1	88	0.01
	81	81	115	0.01
	99.9	99.9	141	0.01
	118.8	118.8	168	0.01

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 6 and 7

APPLICATION RATE= DURATION=	0.14 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	14.2 Ft
CONSTANT HEAD BOUNDARY=	148 Ft
PLOTTING AXIS=	85 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

83	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY
		596 SF
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



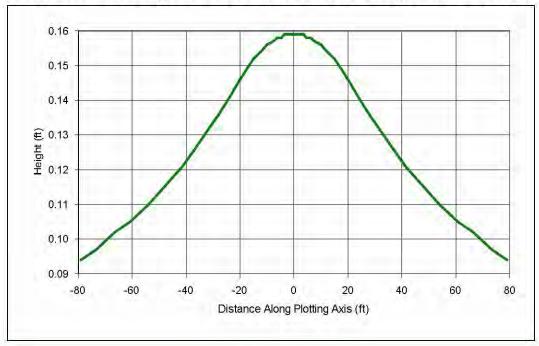
COMPANY: SOUTH SHORE SURVEY CONS.		MODELR	ESULTS	
PROJECT: THE COTTAGES U6 and 7	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: ANTHONY ESPOSITO	-118.8	-118.8	-168	0.01
DATE: 12/11/2022 TIME: 9:26:15 PM	-99.9 -81	-99.9 -81	-141 -115	0.01 0.02
INPUT PARAMETERS	-62.1 -47.3	-62.1 -47.3	-88 -67	0.02 0.02 0.02
Application rate: 0.14 c.ft/hour/sq. ft Duration of application: 24 hours	-35.8 -26.3	-35.8 -26.3	-51 -37	0.02 0.02 0.02
Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour	-18.4 -11.5	-18.4 -11.5	-26 -16	0.03 0.03
Initial saturated thickness: 48 ft Length of application area: 42 ft	-6.9 -3.7	-6.9 -3.7	-10 -5	0.04 0.04
Width of application area: 14.2 ft No constant head boundary used	0 3.7	0 3.7	0 5	0.04 0.04
Plotting axis from Y-Axis: 45 degrees Edge of recharge area:	6.9 11.5	6.9 11.5	10 16	0.04 0.03
positive X: 7.1 ft positive Y: 7.1 ft	18.4 26.3	18.4 26.3	26 37	0.03 0.02
Total volume applied: 2003.904 c.ft	35.8 47.3	35.8 47.3	51 67	0.02 0.02 0.02
	62.1 81	62.1 81	88 115	0.02 0.02 0.02
	99.9 118.8	99.9 118.8	141 168	0.02 0.01 0.01

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 8

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	79 Ft
PLOTTING AXIS=	5 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



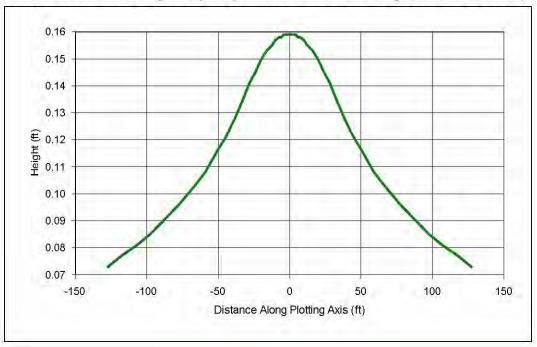
COMPANY: SOUTH SHORE SURVEY CONS.		MODEL R	ESULTS	
PROJECT: THE COTTAGES U8 ANALYST: ANTHONY ESPOSITO	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
DATE: 12/11/2022 TIME: 9:28:05 PM	-6.9 -5.8 -4.7	-78.7 -66.2 -53.7	-79 -66 -54	0.09 0.1 0.11
INPUT PARAMETERS Application rate: 0.14 c.ft/hour/sq. ft Duration of application: 24 hours	-3.6 -2.7 -2.1 -1.5	-41.2 -31.3 -23.7 -17.5	-41 -31 -24 -18	0.12 0.13 0.14 0.15
Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft	-1.3 -1.1 -0.7 -0.4	-17.3 -12.2 -7.6 -4.6	-12 -8 -5	0.15 0.15 0.16 0.16
Length of application area: 42 ft Width of application area: 71 ft No constant head boundary used	-0.2 0 0.2	-2.5 0 2.5	-2 0 2 5 8	0.16 0.16 0.16
Plotting axis from Y-Axis: 5 degrees Edge of recharge area: positive X: 1.8 ft positive Y: 21 ft	0.4 0.7 1.1 1.5	4.6 7.6 12.2 17.5	5 8 12 18	0.16 0.16 0.15 0.15
Total volume applied: 10019.52 c.ft	2.1 2.7 3.6	23.7 31.3 41.2	24 31 41	0.14 0.13 0.12
	4.7 5.8 6.9	53.7 66.2 78.7	54 66 79	0.11 0.1 0.09

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 9

APPLICATION RATE= DURATION=	0.14 cf/day/sf 24 hours
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	127 Ft
PLOTTING AXIS=	45 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



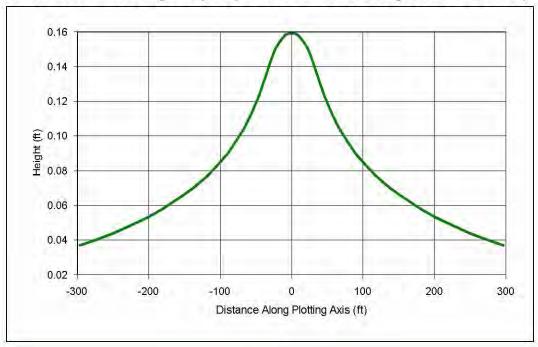
COMPANY: SOUTH SHORE SURVEY CONS.		MODEL R	ESULTS	
COMPANY: COOTTONENE CONVET CONS.	1.0		Plot	Mound
PROJECT: THE COTTAGES U9	Х	Y	Axis	Height
the second second second second second	(ft)	(ft)	(ft)	(ft)
ANALYST: ANTHONY ESPOSITO	22.2			6.62
and a state of the second seco	-89.8	-89.8	-127	0.07
DATE: 12/11/2022 TIME: 9:31:29 PM	-75.5	-75.5	-107	0.08
	-61.2	-61.2	-87	0.09
INPUT PARAMETERS	-47	-47	-66	0.1
	-35.7	-35.7	-51	0.12
Application rate: 0.14 c.ft/hour/sq. ft	-27	-27	-38	0.13
Duration of application: 24 hours	-19.9	-19.9	-28	0.14
Fillable porosity: 0.2	-13.9	-13.9	-20	0.15
Hydraulic conductivity: 30 ft/hour	-8.7	-8.7	-12	0.16
Initial saturated thickness: 48 ft	-5.2	-5.2	-7	0.16
Length of application area: 42 ft	-2.8	-2.8	-4	0.16
Width of application area: 71 ft	0	0	0 4	0.16
No constant head boundary used	2.8	2.8	4	0.16
Plotting axis from Y-Axis: 45 degrees	5.2	5.2	7	0.16
Edge of recharge area:	8.7	8.7	12	0.16
positive X: 21 ft	13.9	13.9	20	0.15
positive Y: 21 ft	19.9	19.9	28	0.14
Total volume applied: 10019.52 c.ft	27	27	38	0.13
and the second sec	35.7	35.7	51	0.12
	47	47	66	0.1
	61.2	61.2	87	0.09
	75.5	75.5	107	0.08
	89.8	89.8	127	0.07

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 10

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	296 Ft
PLOTTING AXIS=	90 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

APPLICATION RATE=		
42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



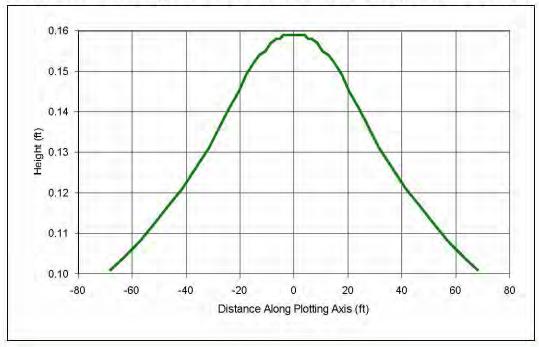
		MODEL	RESULTS	
COMPANY: SOUTH SHORE SURVEY CONS.			Dist	Mound
PROJECT: THE COTTAGES U10	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: ANTHONY ESPOSITO	(14)	(11)	(11)	(11)
	-296	0	-296	0.04
DATE: 12/11/2022 TIME: 9:32:52 PM	-248.9	0	-249	0.04
	-201.8	0	-202	0.05
INPUT PARAMETERS	-154.8	0	-155	0.06
	-117.8	0 0 0	-118	0.08
Application rate: 0.14 c.ft/hour/sq. ft	-89.1		-89	0.09
Duration of application: 24 hours	-65.7	0 0	-66	0.1
Fillable porosity: 0.2	-45.9	0	-46	0.12
Hydraulic conductivity: 30 ft/hour	-28.7	0	-29	0.14
Initial saturated thickness: 48 ft	-17.2		-17	0.15
Length of application area: 42 ft	-9.3	0	-9 0	0.16
Width of application area: 71 ft	0	0	0	0.16
No constant head boundary used	9.3	0	9	0.16
Plotting axis from Y-Axis: 90 degrees	17.2	0	17	0.15
Edge of recharge area:	28.7	0	29	0.14
positive X: 35.5 ft	45.9	0 0	46	0.12
positive Y: 0 ft	65.7	0	66	0.1
Total volume applied: 10019.52 c.ft	89.1	0	89	0.09
	117.8	0	118	0.08
	154.8	0	155	0.06
	201.8	0	202	0.05
	248.9	0	249	0.04
	296	0	296	0.04

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 11

APPLICATION RATE= DURATION=	0.14 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	68 Ft
PLOTTING AXIS=	0 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



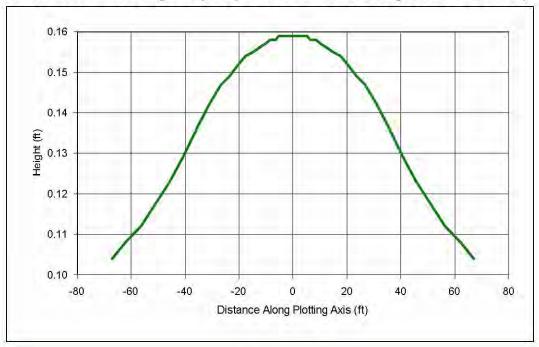
COMPANY: SOUTH SHORE SURVEY CONS.		MODEL R	ESULTS	
PROJECT: THE COTTAGES U11 ANALYST: ANTHONY ESPOSITO	X (ft) O	Y (ft) -68	Plot Axis (ft) -68	Mound Height (ft) 0.1
DATE: 12/11/2022 TIME: 9:34:04 PM INPUT PARAMETERS	0 0 0 0	-57.2 -46.4 -35.6 -27.1	-57 -46 -36 -27	0.11 0.12 0.13 0.14
Application rate: 0.14 c.ft/hour/sq. ft Duration of application: 24 hours Fillable porosity: 0.2	0 0 0	-20.5 -15.1 -10.5	-20 -15 -11	0.14 0.15 0.16
Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft Length of application area: 42 ft Width of application area: 71 ft	0 0 0 0	-6.6 -3.9 -2.1 0	-7 -4 -2	0.16 0.16 0.16 0.16
No constant head boundary used Plotting axis from Y-Axis: 0 degrees Edge of recharge area:	0 0 0	2.1 3.9 6.6	0 2 4 7	0.16 0.16 0.16 0.16
positive X: 0 ft positive Y: 21 ft Total volume applied: 10019.52 c.ft	0 0 0	10.5 15.1 20.5	11 15 20	0.16 0.15 0.14
	0 0 0 0	27.1 35.6 46.4 57.2	27 36 46 57	0.14 0.13 0.12 0.11
	o	68	68	0.1

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 12

APPLICATION RATE= DURATION=	0.14 cf/day/sf 24 hours
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	67 Ft
PLOTTING AXIS=	90 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



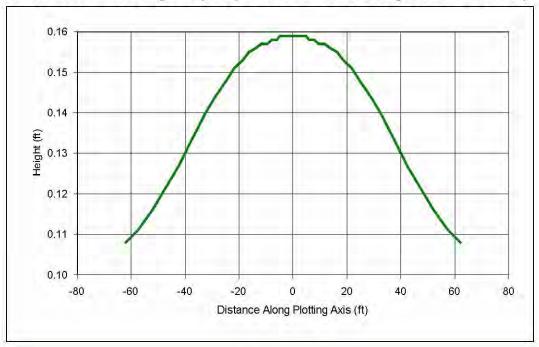
		MODEL	RESULTS	
COMPANY: SOUTH SHORE SURVEY CONS.			Plot	Mound
PROJECT: THE COTTAGES U12	X (ft)	Y (ft)	Axis (ft)	Mound Height (ft)
ANALYST: ANTHONY ESPOSITO	(11)	(11)	(11)	(11)
	-67	0	-67	0.1
DATE: 12/11/2022 TIME: 9:35:23 PM	-56.3	0	-56	0.11
	-45.7	0	-46	0.12
INPUT PARAMETERS	-35	0	-35	0.14
	-26.7	0	-27	0.15
Application rate: 0.14 c.ft/hour/sq. ft	-20.2	0	-20	0.15
Duration of application: 24 hours	-14.9	0	-15	0.16
Fillable porosity: 0.2	-10.4	0	-10	0.16
Hydraulic conductivity: 30 ft/hour	-6.5	0	-6	0.16
Initial saturated thickness: 48 ft	-3.9	0 0	-4	0.16
Length of application area: 42 ft	-2.1	0	-2	0.16
Width of application area: 71 ft	0	0	0	0.16
No constant head boundary used	2.1	0	2 4	0.16
Plotting axis from Y-Axis: 90 degrees	3.9	0		0.16
Edge of recharge area:	6.5	0	6	0.16
positive X: 35.5 ft	10.4	0	10	0.16
positive Y: 0 ft	14.9	0	15	0.16
Total volume applied: 10019.52 c.ft	20.2	0	20	0.15
	26.7	0	27	0.15
	35	0	35	0.14
	45.7	0	46	0.12
	56.3	0	56	0.11
	67	0	67	0.1

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 13

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	62 Ft
PLOTTING AXIS=	90 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



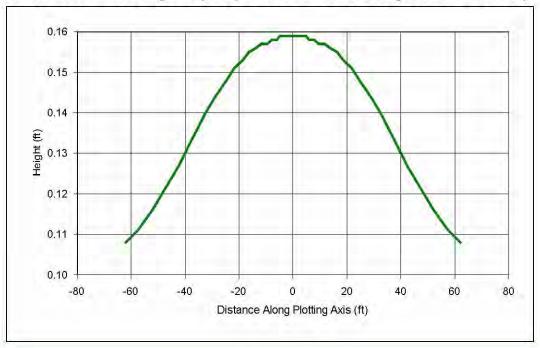
		MODEL	RESULTS	
COMPANY: SOUTH SHORE SURVEY CONS.			Plot	Mound
PROJECT: THE COTTAGES U13	X (ft)	Y (ft)	Axis (ft)	Height (ft)
ANALYST: ANTHONY ESPOSITO	(11)	(11)	(11)	(14)
	-62	0	-62	0.11
DATE: 12/11/2022 TIME: 9:37:44 PM	-52.1	0	-52	0.12
	-42.3	0	-42	0.13
INPUT PARAMETERS	-32.4	0 0	-32	0.14
	-24.7	0	-25	0.15
Application rate: 0.14 c.ft/hour/sq. ft	-18.7	0	-19	0.15
Duration of application: 24 hours	-13.8	0	-14	0.16
Fillable porosity: 0.2	-9.6	0 0	-10	0.16
Hydraulic conductivity: 30 ft/hour	-6		-6	0.16
Initial saturated thickness: 48 ft	-3.6	0 0	-4	0.16
Length of application area: 42 ft	-2	0	-2	0.16
Width of application area: 71 ft	0	0 0	0	0.16
No constant head boundary used	2 3.6	0	2	0.16
Plotting axis from Y-Axis: 90 degrees	3.6	0	4	0.16
Edge of recharge area:	6	0	6	0.16
positive X: 35.5 ft	9.6	0	10	0.16
positive Y: 0 ft	13.8	0	14	0.16
Total volume applied: 10019.52 c.ft	18.7	0	19	0.15
	24.7	0	25	0.15
	32.4	0	32	0.14
	42.3	0	42	0.13
	52.1	0	52	0.12
	62	0	62	0.11

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 14

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	62 Ft
PLOTTING AXIS=	90 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



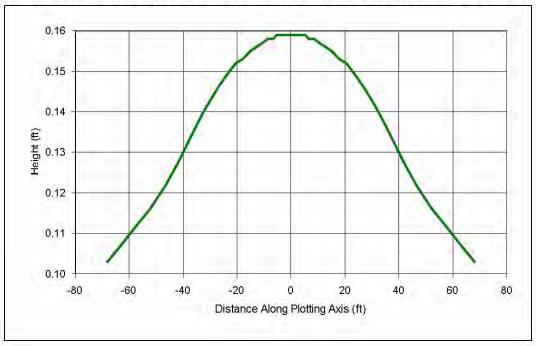
		MODEL	RESULTS	
COMPANY: SOUTH SHORE SURVEY CONS.			Plot	Mound
PROJECT: THE COTTAGES U15	х	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: ANTHONY ESPOSITO				
and a state of the second s	-62	0	-62	0.11
DATE: 12/11/2022 TIME: 9:41:43 PM	-52.1	0	-52	0.12
	-42.3	0	-42	0.13
INPUT PARAMETERS	-32.4	0	-32	0.14
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-24.7	0	-25	0.15
Application rate: 0.14 c.ft/hour/sq. ft	-18.7	0	-19	0.15
Duration of application: 24 hours	-13.8	0	-14	0.16
Fillable porosity: 0.2	-9.6	0 0	-10	0.16
Hydraulic conductivity: 30 ft/hour	-6		-6	0.16
Initial saturated thickness: 48 ft	-3.6	0	-4	0.16
Length of application area: 42 ft	-2	0	-2	0.16
Width of application area: 71 ft	0 2	0 0	0	0.16
No constant head boundary used	2	0	2	0.16
Plotting axis from Y-Axis: 90 degrees	3.6	0	4	0.16
Edge of recharge area:	6	0	6	0.16
positive X: 35.5 ft	9.6	0	10	0.16
positive Y: 0 ft	13.8	0	14	0.16
Total volume applied: 10019.52 c.ft	18.7	0	19	0.15
	24.7	0	25	0.15
	32.4	0	32	0.14
	42.3	0	42	0.13
	52.1	0	52	0.12
	62	0	62	0.11

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 15

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	68 Ft
PLOTTING AXIS=	80 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



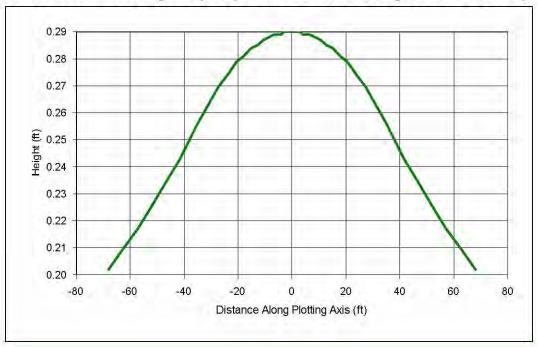
	•			
		MODELR	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS.			2.1	
PROJECT: THE COTTAGES U15	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: ANTHONY ESPOSITO	(14)	(11)	(11)	(11)
	-67	-11.8	-68	0.1
DATE: 12/11/2022 TIME: 9:43:58 PM	-56.3	-9.9	-57	0.11
	-45.7	-8.1	-46	0.12
INPUT PARAMETERS	-35	-6.2	-36	0.14
	-26.6	-4.7	-27	0.15
Application rate: 0.14 c.ft/hour/sq. ft	-20.2	-3.6	-20	0.15
Duration of application: 24 hours	-14.9	-2.6	-15	0.16
Fillable porosity: 0.2	-10.4	-1.8	-11	0.16
Hydraulic conductivity: 30 ft/hour	-6.5	-1.1	-7	0.16
Initial saturated thickness: 48 ft	-3.9	-0.7	-4	0.16
Length of application area: 42 ft	-2.1	-0.4	-4 -2 0 2 4	0.16
Width of application area: 71 ft	0	0	0	0.16
No constant head boundary used	2.1	0.4	2	0.16
Plotting axis from Y-Axis: 80 degrees	3.9	0.7	4	0.16
Edge of recharge area:	6.5	1.1	7	0.16
positive X: 35.5 ft	10.4	1.8	11	0.16
positive Y: 6.3 ft	14.9	2.6	15	0.16
Total volume applied: 10019.52 c.ft	20.2	3.6	20	0.15
	26.6	4.7	27	0.15
	35	6.2	36	0.14
	45.7	8.1	46	0.12
	56.3	9.9	57	0.11
	67	11.8	68	0.1

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


#### MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 16 and 17

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	84.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	68 Ft
PLOTTING AXIS=	80 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

83	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 596 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



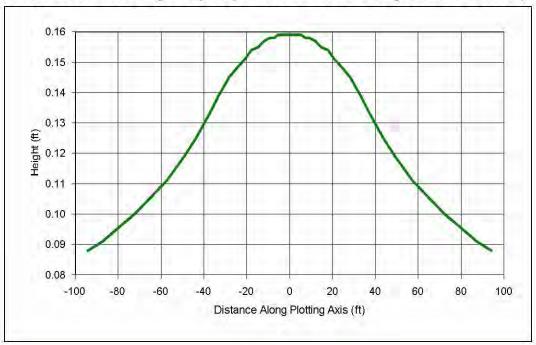
		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS. PROJECT: THE COTTAGES U16and17 ANALYST: ANTHONY ESPOSITO	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
DATE: 12/11/2022 TIME: 9:45:36 PM	-67 -56.3 -45.7	-11.8 -9.9 -8.1	-68 -57 -46	0.2 0.22 0.24
INPUT PARAMETERS Application rate: 0.14 c.ft/hour/sq. ft Duration of application: 24 hours	-35 -26.6 -20.2 -14.9	-6.2 -4.7 -3.6 -2.6	-36 -27 -20 -15	0.26 0.27 0.28 0.28
Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft	-14.3 -10.4 -6.5 -3.9	-2.0 -1.8 -1.1 -0.7	-10 -11 -7 -4	0.29 0.29 0.29 0.29
Length of application area: 84 ft Width of application area: 71 ft No constant head boundary used	-2.1 0 2.1	-0.4 0 0.4	-2 0 2 4	0.29 0.29 0.29
Plotting axis from Y-Axis: 80 degrees Edge of recharge area: positive X: 35.5 ft positive Y: 6.3 ft	3.9 6.5 10.4 14.9	0.7 1.1 1.8 2.6	4 7 11 15	0.29 0.29 0.29 0.28
Total volume applied: 20039.04 c.ft	20.2 26.6 35	3.6 4.7 6.2	20 27 36	0.28 0.27 0.26
	45.7 56.3 67	8.1 9.9 11.8	46 57 68	0.24 0.22 0.2

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 18

APPLICATION RATE= DURATION=	0.14 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	94 Ft
PLOTTING AXIS=	80 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



THE REPORT OF A CONTRACT OF A DECK		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS.				
PROJECT: THE COTTAGES U18	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: ANTHONY ESPOSITO	(11)	(ity	(11)	(it)
	-92.6	-16.3	-94	0.09
DATE: 12/11/2022 TIME: 9:47:06 PM	-77.9	-13.7	-79	0.1
	-63.1	-11.1	-64	0.11
INPUT PARAMETERS	-48.4	-8.5	-49	0.12
	-36.8	-6.5	-37	0.13
Application rate: 0.14 c.ft/hour/sq. ft	-27.9	-4.9	-28	0.14
Duration of application: 24 hours	-20.5	-3.6	-21	0.15
Fillable porosity: 0.2	-14.3	-2.5	-15	0.16
Hydraulic conductivity: 30 ft/hour	-9	-1.6	-9	0.16
Initial saturated thickness: 48 ft	-5.4	-0.9	-5	0.16
Length of application area: 42 ft	-2.9	-0.5	-3	0.16
Width of application area: 71 ft	0	0	0	0.16
No constant head boundary used	2.9	0.5	3	0.16
Plotting axis from Y-Axis: 80 degrees	5.4	0.9	0 3 5 9	0.16
Edge of recharge area:	9	1.6		0.16
positive X: 35.5 ft	14.3	2.5	15	0.16
positive Y: 6.3 ft	20.5	3.6	21	0.15
Total volume applied: 10019.52 c.ft	27.9	4.9	28	0.14
	36.8	6.5	37	0.13
	48.4	8.5	49	0.12
	63.1	11.1	64	0.11
	77.9	13.7	79	0.1
	92.6	16.3	94	0.09

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:

## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 19

APPLICATION RATE=	0.14 cf/day/sf
DURATION=	24 hours
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	53 Ft
PLOTTING AXIS=	5 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



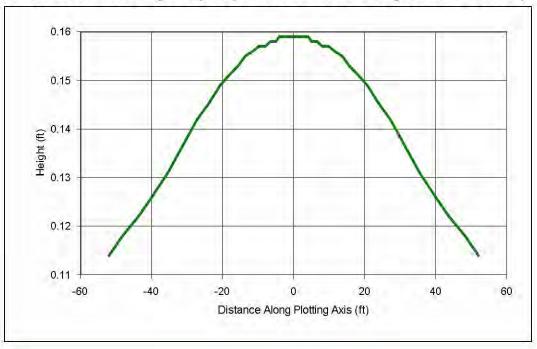
COMPANY: SOUTH SHORE SURVEY CONS.		MODEL R	ESULTS	
COMPANT. SOUTH SHOKE SURVET CONS.			Diet	Mound
PROJECT: THE COTTAGES U19	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: ANTHONY ESPOSITO	(14)	(it)	(11)	(14)
	-4.6	-52.8	-53	0.11
DATE: 12/11/2022 TIME: 9:48:31 PM	-3.9	-44.4	-45	0.12
	-3.1	-36	-36	0.13
INPUT PARAMETERS	-2.4	-27.6	-28	0.14
	-1.8	-21	-21	0.14
Application rate: 0.14 c.ft/hour/sq. ft	-1.4	-15.9	-16	0.15
Duration of application: 24 hours	-1	-11.7	-12	0.16
Fillable porosity: 0.2	-0.7	-8.2	-8	0.16
Hydraulic conductivity: 30 ft/hour	-0.4	-5.1	-8 -5 -3 -2	0.16
Initial saturated thickness: 48 ft	-0.3	-3.1	-3	0.16
Length of application area: 42 ft	-0.1	-1.7	-2	0.16
Width of application area: 71 ft	0	0	0	0.16
No constant head boundary used	0.1	1.7	2	0.16
Plotting axis from Y-Axis: 5 degrees	0.3	3.1	3	0.16
Edge of recharge area:	0.4	5.1	0 2 3 5 8	0.16
positive X: 1.8 ft	0.7	8.2		0.16
positive Y: 21 ft	1	11.7	12	0.16
Total volume applied: 10019.52 c.ft	1.4	15.9	16	0.15
and the second sec	1.8	21	21	0.14
	2.4	27.6	28	0.14
	3.1	36	36	0.13
	3.9	44.4	45	0.12
	4.6	52.8	53	0.11

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

CALCULATIONS BASED ON HANTUSH METHOD

UNIT 20

APPLICATION RATE= DURATION=	0.14 CF/DAY/SF 24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	52 Ft
PLOTTING AXIS=	45 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



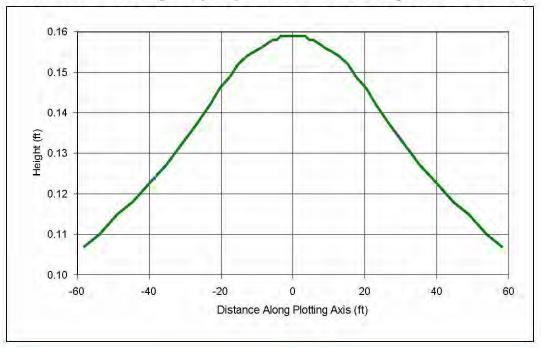
COMPANY: SOUTH SHORE SURVEY CONS.		MODEL R	ESULTS	
PROJECT: THE COTTAGES U20 ANALYST: ANTHONY ESPOSITO	X (ft) -36.8	Y (ft) -36.8	Plot Axis (ft) -52	Mound Height (ft) 0.11
DATE: 12/11/2022 TIME: 9:49:58 PM INPUT PARAMETERS	-30.9 -25.1 -19.2 -14.6	-30.9 -25.1 -19.2 -14.6	-44 -35 -27 -21	0.12 0.13 0.14 0.15
Application rate: 0.14 c.ft/hour/sq. ft Duration of application: 24 hours Fillable porosity: 0.2 Hydraulic conductivity: 30 ft/hour Initial saturated thickness: 48 ft Length of application area: 42 ft Width of application area: 71 ft No constant head boundary used Plotting axis from Y-Axis: 45 degrees Edge of recharge area: positive X: 21 ft positive Y: 21 ft Total volume applied: 10019.52 c.ft	-11.1 -8.2 -5.7 -3.6 -2.1 -1.2 0 1.2 2.1 3.6 5.7 8.2 11.1	-11.1 -8.2 -5.7 -3.6 -2.1 -1.2 0 1.2 2.1 3.6 5.7 8.2 11.1	-16 -12 -8 -5 -3 -2 0 2 3 5 8 12 16	0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
	14.6 19.2 25.1 30.9 36.8	14.6 19.2 25.1 30.9 36.8	21 27 35 44 52	0.15 0.14 0.13 0.12 0.11

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 21

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	7.1 Ft
CONSTANT HEAD BOUNDARY=	58 Ft
PLOTTING AXIS=	5 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

42	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 298 SF DAY
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



COMPANY:         SOUTH SHORE SURVEY CONS.         Plot         Mound           PROJECT:         THE COTTAGES U21         X         Y         Axis         Height           ANALYST:         ANTHONY ESPOSITO         -5.1         -57.8         -58         0.11           DATE:         12/11/2022         TIME:         9:51:27 PM         -4.3         -48.6         -49         0.12           INPUT PARAMETERS         -2.6         -30.2         -30         0.13           Application rate:         0.14         c.ft/hour/sq. ft         -1.5         -17.4         -17         0.15           Duration of application:         24 hours         -1.1         -12.8         -13         0.15           Fillable porosity:         0.2         -0.8         -9         -9         0.16           Hydraulic conductivity: 30 ft/hour         -0.5         -5.6         -6         0.16           Initial saturated thickness:         48 ft         -0.2         -1.8         -2         0.16           Vidth of application area:         71 ft         0         0         0         0.16           No constant head boundary used         0.2         1.8         2         0.16           Plotting axis from Y-Axis: 5 deg			MODELR	ESULTS	
PROJECT: THE COTTAGES U21       X       Y       Axis       Height         ANALYST: ANTHONY ESPOSITO       (ft)       (ft)       (ft)       (ft)       (ft)         DATE: 12/11/2022 TIME: 9:51:27 PM       -5.1       -57.8       -58       0.11         DATE: 12/11/2022 TIME: 9:51:27 PM       -4.3       -48.6       -49       0.12         INPUT PARAMETERS       -2.6       -30.2       -30       0.13         Application rate: 0.14 c.ft/hour/sq. ft       -1.5       -17.4       -17       0.15         Duration of application: 24 hours       -1.1       -12.8       -13       0.15         Fillable porosity: 0.2       -0.8       -9       -9       0.16         Hydraulic conductivity: 30 ft/hour       -0.5       -5.6       -6       0.16         Initial saturated thickness: 48 ft       -0.3       -3.4       -3       0.16         Width of application area: 71 ft       0       0       0       0.16         No constant head boundary used       0.2       1.8       2       0.16         Positive Y: 21 ft       1.1       12.8       13       0.15         Total volume applied: 10019.52 c.ft       1.5       17.4       17       0.15         2	COMPANY: SOUTH SHORE SURVEY CONS.			Diet	Mound
ANALYST: ANTHONY ESPOSITO       -5.1       -57.8       -58       0.11         DATE: 12/11/2022 TIME: 9:51:27 PM       -4.3       -48.6       -49       0.12         INPUT PARAMETERS       -2.6       -30.2       -30       0.13         -2       -23       -23       0.14         Application rate: 0.14 c.ft/hour/sq. ft       -1.5       -17.4       -17       0.15         Duration of application: 24 hours       -1.1       -12.8       -13       0.16         Hydraulic conductivity: 30 ft/hour       -0.5       -5.6       -6       0.16         Initial saturated thickness: 48 ft       -0.3       -3.4       -3       0.16         Length of application area: 42 ft       -0.2       -1.8       -2       0.16         Width of application area: 71 ft       0       0       0       0.16         No constant head boundary used       0.2       1.8       2       0.16         Plotting axis from Y-Axis: 5 degrees       0.3       3.4       3       0.16         Edge of recharge area:       0.5       5.6       6       0.16         positive X: 1.8 ft       0.8       9       9       0.16         positive Y: 21 ft       1.1       12.8       13 <td>PROJECT: THE COTTAGES U21</td> <td></td> <td></td> <td>Axis</td> <td>Height</td>	PROJECT: THE COTTAGES U21			Axis	Height
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ANALYST: ANTHONY ESPOSITO	(it)	(11)	(11)	(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-5.1	-57.8	-58	0.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DATE: 12/11/2022 TIME: 9:51:27 PM	-4.3	-48.6	-49	0.12
-2 $-23$ $-23$ $0.14$ Application rate: $0.14$ c.ft/hour/sq. ft $-1.5$ $-17.4$ $-17$ $0.15$ Duration of application: $24$ hours $-1.1$ $-12.8$ $-13$ $0.15$ Fillable porosity: $0.2$ $-0.8$ $-9$ $-9$ $0.16$ Hydraulic conductivity: $30$ ft/hour $-0.5$ $-5.6$ $-6$ $0.16$ Initial saturated thickness: $48$ ft $-0.3$ $-3.4$ $-3$ $0.16$ Length of application area: $42$ ft $-0.2$ $-1.8$ $-2$ $0.16$ Width of application area: 71 ft $0$ $0$ $0$ $0.16$ No constant head boundary used $0.2$ $1.8$ $2$ $0.16$ Plotting axis from Y-Axis: 5 degrees $0.3$ $3.4$ $3$ $0.16$ Edge of recharge area: $0.5$ $5.6$ $6$ $0.16$ positive X: $1.8$ ft $0.8$ $9$ $9$ $0.16$ positive Y: $21$ ft $1.1$ $12.8$ $13$ $0.15$ Total volume applied: $10019.52$ c.ft $1.5$ $17.4$ $17$ $0.15$ $2$ $23$ $23$ $0.14$ $2.6$ $30.2$ $30$ $0.13$ $3.4$ $39.4$ $40$ $0.12$ $4.3$ $48.6$ $49$ $0.12$			-39.4	-40	0.12
Application rate: $0.14  cdots ft/hour/sq.$ ft-1.5-17.4-170.15Duration of application: 24 hours-1.1-12.8-130.15Fillable porosity: 0.2-0.8-9-90.16Hydraulic conductivity: 30 ft/hour-0.5-5.6-60.16Initial saturated thickness: 48 ft-0.3-3.4-30.16Length of application area: 42 ft-0.2-1.8-20.16Width of application area: 71 ft0000.16No constant head boundary used0.21.820.16Plotting axis from Y-Axis: 5 degrees0.33.430.16Edge of recharge area:0.55.660.16positive X: 1.8 ft0.8990.16positive Y: 21 ft1.112.8130.15Total volume applied: 10019.52 c.ft1.517.4170.15223230.142.630.2300.133.439.4400.124.348.6490.12	INPUT PARAMETERS		-30.2	-30	0.13
Duration of application: 24 hours $-1.1$ $-12.8$ $-13$ $0.15$ Fillable porosity: $0.2$ $-0.8$ $-9$ $-9$ $0.16$ Hydraulic conductivity: 30 ft/hour $-0.5$ $-5.6$ $-6$ $0.16$ Initial saturated thickness: 48 ft $-0.3$ $-3.4$ $-3$ $0.16$ Length of application area: 42 ft $-0.2$ $-1.8$ $-2$ $0.16$ Width of application area: 71 ft $0$ $0$ $0$ $0.16$ No constant head boundary used $0.2$ $1.8$ $2$ $0.16$ Plotting axis from Y-Axis: 5 degrees $0.3$ $3.4$ $3$ $0.16$ Edge of recharge area: $0.5$ $5.6$ $6$ $0.16$ positive X: 1.8 ft $0.8$ $9$ $9$ $0.16$ positive Y: 21 ft $1.1$ $12.8$ $13$ $0.15$ Total volume applied: 10019.52 c.ft $1.5$ $17.4$ $17$ $0.15$ $2$ $23$ $23$ $0.14$ $2.6$ $30.2$ $30$ $0.13$ $3.4$ $39.4$ $40$ $0.12$ $4.3$ $48.6$ $49$ $0.12$			-23	-23	
Fillable porosity: $0.2$ -0.8-9-90.16Hydraulic conductivity: 30 ft/hour-0.5-5.6-60.16Initial saturated thickness: 48 ft-0.3-3.4-30.16Length of application area: 42 ft-0.2-1.8-20.16Width of application area: 71 ft0000.16No constant head boundary used0.21.820.16Plotting axis from Y-Axis: 5 degrees0.33.430.16Edge of recharge area:0.55.660.16positive X: 1.8 ft0.8990.16positive Y: 21 ft1.112.8130.15Total volume applied: 10019.52 c.ft1.517.4170.15223230.142.630.2300.133.439.4400.124.348.6490.12					
Hydraulic conductivity: 30 ft/hour $-0.5$ $-5.6$ $-6$ $0.16$ Initial saturated thickness: 48 ft $-0.3$ $-3.4$ $-3$ $0.16$ Length of application area: 42 ft $-0.2$ $-1.8$ $-2$ $0.16$ Width of application area: 71 ft $0$ $0$ $0$ $0.16$ No constant head boundary used $0.2$ $1.8$ $2$ $0.16$ Plotting axis from Y-Axis: 5 degrees $0.3$ $3.4$ $3$ $0.16$ Edge of recharge area: $0.5$ $5.6$ $6$ $0.16$ positive X: 1.8 ft $0.8$ $9$ $9$ $0.16$ positive Y: 21 ft $1.1$ $12.8$ $13$ $0.15$ Total volume applied: 10019.52 c.ft $1.5$ $17.4$ $17$ $0.15$ $2$ $23$ $23$ $0.14$ $2.6$ $30.2$ $30$ $3.4$ $39.4$ $40$ $0.12$ $4.3$ $48.6$ $49$ $0.12$			-12.8		
Initial saturated thickness: 48 ft-0.3-3.4-30.16Length of application area: 42 ft-0.2-1.8-20.16Width of application area: 71 ft0000.16No constant head boundary used0.21.820.16Plotting axis from Y-Axis: 5 degrees0.33.430.16Edge of recharge area:0.55.660.16positive X: 1.8 ft0.8990.16positive Y: 21 ft1.112.8130.15Total volume applied: 10019.52 c.ft1.517.4170.15223230.142.630.2300.133.439.4400.124.348.6490.12			-9	-9	
Width of application area: 71 ft0000.16No constant head boundary used0.21.820.16Plotting axis from Y-Axis: 5 degrees0.33.430.16Edge of recharge area:0.55.660.16positive X: 1.8 ft0.8990.16positive Y: 21 ft1.112.8130.15Total volume applied: 10019.52 c.ft1.517.4170.15223230.142.630.2300.133.439.4400.124.348.6490.12		0.0 - 0.0		-6	
Width of application area: 71 ft0000.16No constant head boundary used0.21.820.16Plotting axis from Y-Axis: 5 degrees0.33.430.16Edge of recharge area:0.55.660.16positive X: 1.8 ft0.8990.16positive Y: 21 ft1.112.8130.15Total volume applied: 10019.52 c.ft1.517.4170.15223230.142.630.2300.133.439.4400.124.348.6490.12		and the second sec		-3	
positive X: 1.8 ft       0.8       9       9       0.16         positive Y: 21 ft       1.1       12.8       13       0.15         Total volume applied: 10019.52 c.ft       1.5       17.4       17       0.15         2       23       23       0.14         2.6       30.2       30       0.13         3.4       39.4       40       0.12         4.3       48.6       49       0.12				-2	
positive X: 1.8 ft       0.8       9       9       0.16         positive Y: 21 ft       1.1       12.8       13       0.15         Total volume applied: 10019.52 c.ft       1.5       17.4       17       0.15         2       23       23       0.14         2.6       30.2       30       0.13         3.4       39.4       40       0.12         4.3       48.6       49       0.12				0	
positive X: 1.8 ft       0.8       9       9       0.16         positive Y: 21 ft       1.1       12.8       13       0.15         Total volume applied: 10019.52 c.ft       1.5       17.4       17       0.15         2       23       23       0.14         2.6       30.2       30       0.13         3.4       39.4       40       0.12         4.3       48.6       49       0.12				2	
positive X: 1.8 ft       0.8       9       9       0.16         positive Y: 21 ft       1.1       12.8       13       0.15         Total volume applied: 10019.52 c.ft       1.5       17.4       17       0.15         2       23       23       0.14         2.6       30.2       30       0.13         3.4       39.4       40       0.12         4.3       48.6       49       0.12				3	
positive Y: 21 ft       1.1       12.8       13       0.15         Total volume applied: 10019.52 c.ft       1.5       17.4       17       0.15         2       23       23       0.14         2.6       30.2       30       0.13         3.4       39.4       40       0.12         4.3       48.6       49       0.12				6	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Total volume applied: 10019.52 c.ft1.517.4170.15223230.142.630.2300.133.439.4400.124.348.6490.12					
223230.142.630.2300.133.439.4400.124.348.6490.12					
2.630.2300.133.439.4400.124.348.6490.12	Total volume applied: 10019.52 c.ft				
3.439.4400.124.348.6490.12	and a set of				
4.3 48.6 49 0.12					
5.1 57.8 58 0.11					
		5.1	57.8	58	0.11

 Location:
 279-281
 Date:
 12/12/2022

 STREET:
 OLD OAKEN BUCKET RD., SCITUATE M Revised:

 Project No.:
 1908.00
 Computed By:

 Checked By:
 Checked By:


## MOUNDING CALCULATION INPUTS

## CALCULATIONS BASED ON HANTUSH METHOD

UNIT 22 and 23

APPLICATION RATE=	0.14 CF/DAY/SF
DURATION=	24 HOURS
FILLABLE POROSITY=	0.2 STANDARD
HYDRAULIC CONDUCTIVITY=	30 FT/DAY
LENGTH OF APPLICATION=	42.00 Ft
WIDTH OF APPLICATION=	14.2 Ft
CONSTANT HEAD BOUNDARY=	60 Ft
PLOTTING AXIS=	45 DEGREES
SATURATED THICKNESS=	48 FT max. on-site

83	CF	DESIGN FLOW / <u>1</u> / <u>1</u> DAY 596 SF
=	0.14	CF/DAY/SF
HYDRAULIC CONDUCTIVITY=	30	FROM "RANGES OF HYDRAULIC CONDUCTIVITY-UNCONSOLIDATED MATERIALS"
ELEVATION OF BEDROCK=	50	FROM "MASSGIS"
DEPTH OF WATER=	2	max. on-site
SATURATED THICKNESS=	48	



		MODEL R	ESULTS	
COMPANY: SOUTH SHORE SURVEY CONS.			Dist	Maximal
PROJECT: THE COTTAGES U22	X (ff)	Y (ff)	Plot Axis	Mound Height
ANALYST: ANTHONY ESPOSITO	(ft)	(ft)	(ft)	(ft)
Anderon: Anthony Editorito	-42.4	-42.4	-60	0.02
DATE: 12/11/2022 TIME: 9:53:00 PM	-35.7	-35.7	-50	0.02
BATE: TETTIZOZE TIME: 0.00.00 T M	-28.9	-28.9	-41	0.02
INPUT PARAMETERS	-22.2	-22.2	-31	0.03
//// STIT///////////////////////////////	-16.9	-16.9	-24	0.03
Application rate: 0.14 c.ft/hour/sq. ft	-12.8	-12.8	-18	0.03
Duration of application: 24 hours	-9.4	-9.4	-13	0.03
Fillable porosity: 0.2	-6.6	-6.6	-9	0.04
Hydraulic conductivity: 30 ft/hour	-4.1	-4.1	-6	0.04
Initial saturated thickness: 48 ft	-2.5	-2.5	-3	0.04
Length of application area: 42 ft	-1.3	-1.3	-3 -2	0.04
Width of application area: 14.2 ft	0	0	0	0.04
No constant head boundary used	1.3	1.3	0 2 3	0.04
Plotting axis from Y-Axis: 45 degrees	2.5	2.5	3	0.04
Edge of recharge area:	4.1	4.1	6	0.04
positive X: 7.1 ft	6.6	6.6	9	0.04
positive Y: 7.1 ft	9.4	9.4	13	0.03
Total volume applied: 2003.904 c.ft	12.8	12.8	18	0.03
	16.9	16.9	24	0.03
	22.2	22.2	31	0.03
	28.9	28.9	41	0.02
	35.7	35.7	50	0.02
	42.4	42.4	60	0.02

## Calculation of Required Water Quality Flow for Sizing of Stormwater Treatment System

12/12/2022

Based on Massachusetts DEP document:

"Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

Stormwater Standard No. 4 requires that the full WQV be captured and treated to remove 80% of the average annual post-construction TSS load.

Since manufactured proprietary separators are sized using discharge rates and not volume, MassDEP is requiring this standard method be used to convert the required WQV to a discharge rate (WQF) to be treated.

Project Site: Project Location:

Runoff Depth, Q: Table 1. **1** " (0.5" or 1")

Structure Name	Imp. Area (acres)	A (miles ² )	t _c (min.)	t _c (hrs.)
HYDRO 1	0.05	0.000078	6.3	0.105

Because only runoff from impervious surfaces is used in calculation of WQV, area is considered 100% impervious Therefore, CN = 98

Enter Ia/P Ratio for CN=98:

la/P = 0.034

(0.058 for Q=0.5" / 0.034 for Q=1")

Enter unit peak discharge, qu (csm/in) for Type III rainfall distribution, Ia/P, and tc: From Figure 2 (Q=0.5") or Figure 4 (Q=1")

Table 2.

Structure		
Name	tc (hours)	qu (csm/in)
HYDRO 1	0.105	774

WQF in cfs = (qu)(A)(Q), where:

WQF = water quality flow (cfs)

q_u = unit peak discharge (csm/in)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

From Table 2 above

Based on Area Type, from above

Table 3.

Structure Name	q _u (csm/in)	A (miles ² )	Q (in)	WQF (cfs)	Peak Flow (cfs)	Proposed Device ¹
HYDRO 1	774	0.000078	1	0.06		FD-3HC

¹Proposed Device is sized so that the required site WQF is less than the treatment flow at which the device achieves at least 80% TSS removal, as documented by enclosed test data.

12/12/2022

Based on Massachusetts DEP document:

"Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

Stormwater Standard No. 4 requires that the full WQV be captured and treated to remove 80% of the average annual post-construction TSS load.

Since manufactured proprietary separators are sized using discharge rates and not volume, MassDEP is requiring this standard method be used to convert the required WQV to a discharge rate (WQF) to be treated.

Project Site: Project Location:

Runoff Depth, Q: Table 1. **1** " (0.5" or 1")

Structure Name	Imp. Area (acres)	A (miles ² )	t _c (min.)	t _c (hrs.)
HYDRO 2	0.37	0.000578	13.3	0.222

Because only runoff from impervious surfaces is used in calculation of WQV, area is considered 100% impervious Therefore, CN = 98

Enter Ia/P Ratio for CN=98:

la/P = 0.034

(0.058 for Q=0.5" / 0.034 for Q=1")

Enter unit peak discharge, qu (csm/in) for Type III rainfall distribution, Ia/P, and tc: From Figure 2 (Q=0.5") or Figure 4 (Q=1")

Table 2.

Structure		
Name	tc (hours)	qu (csm/in)
HYDRO 2	0.222	654

WQF in cfs = (qu)(A)(Q), where:

WQF = water quality flow (cfs)

q_u = unit peak discharge (csm/in)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

From Table 2 above

Based on Area Type, from above

#### Table 3.

Structure Name	q _u (csm/in)	A (miles ² )	Q (in)	WQF (cfs)	Peak Flow (cfs)	Proposed Device ¹
HYDRO 2	654	0.000578	1	0.38		FD-3HC

12/12/2022

Based on Massachusetts DEP document:

"Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

Stormwater Standard No. 4 requires that the full WQV be captured and treated to remove 80% of the average annual post-construction TSS load.

Since manufactured proprietary separators are sized using discharge rates and not volume, MassDEP is requiring this standard method be used to convert the required WQV to a discharge rate (WQF) to be treated.

Project Site: Project Location:

Runoff Depth, Q: Table 1. **1** " (0.5" or 1")

Structure	Imp. Area	$(100 \text{ is } 100 \text{ s}^2)$		. (1 )
Name	(acres)	A (miles ² )	t _c (min.)	t _c (hrs.)
HYDRO 3	0.84	0.001313	26.1	0.435

Because only runoff from impervious surfaces is used in calculation of WQV, area is considered 100% impervious Therefore, CN = 98

Enter Ia/P Ratio for CN=98:

la/P = 0.034

(0.058 for Q=0.5" / 0.034 for Q=1")

Enter unit peak discharge, qu (csm/in) for Type III rainfall distribution, Ia/P, and tc: From Figure 2 (Q=0.5") or Figure 4 (Q=1")

Table 2.

Structure		
Name	tc (hours)	qu (csm/in)
HYDRO 3	0.435	528

WQF in cfs = (qu)(A)(Q), where:

WQF = water quality flow (cfs)

q_u = unit peak discharge (csm/in)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

From Table 2 above

Based on Area Type, from above

Table 3.

Structure Name	q _u (csm/in)	A (miles ² )	Q (in)	WQF (cfs)	Peak Flow (cfs)	Proposed Device ¹
HYDRO 3	528	0.001313	1	0.69		FD-3HC

12/12/2022

Based on Massachusetts DEP document:

"Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

Stormwater Standard No. 4 requires that the full WQV be captured and treated to remove 80% of the average annual post-construction TSS load.

Since manufactured proprietary separators are sized using discharge rates and not volume, MassDEP is requiring this standard method be used to convert the required WQV to a discharge rate (WQF) to be treated.

Project Site: Project Location:

Runoff Depth, Q: Table 1. **1** " (0.5" or 1")

Structure	Imp. Area			
Name	(acres)	A (miles ² )	t _c (min.)	t _c (hrs.)
HYDRO 4	0.16	0.000250	6.0	0.100

Because only runoff from impervious surfaces is used in calculation of WQV, area is considered 100% impervious Therefore, CN = 98

Enter Ia/P Ratio for CN=98:

la/P = 0.034

(0.058 for Q=0.5" / 0.034 for Q=1")

Enter unit peak discharge, qu (csm/in) for Type III rainfall distribution, Ia/P, and tc: From Figure 2 (Q=0.5") or Figure 4 (Q=1")

Table 2.

Structure		
Name	tc (hours)	qu (csm/in)
HYDRO 4	0.100	774

WQF in cfs = (qu)(A)(Q), where:

WQF = water quality flow (cfs)

q_u = unit peak discharge (csm/in)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

From Table 2 above

Based on Area Type, from above

#### Table 3.

Structure Name	q _u (csm/in)	A (miles ² )	Q (in)	WQF (cfs)	Peak Flow (cfs)	Proposed Device ¹
HYDRO 4	774	0.000250	1	0.19		FD-3HC

12/12/2022

Based on Massachusetts DEP document:

"Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

Stormwater Standard No. 4 requires that the full WQV be captured and treated to remove 80% of the average annual post-construction TSS load.

Since manufactured proprietary separators are sized using discharge rates and not volume, MassDEP is requiring this standard method be used to convert the required WQV to a discharge rate (WQF) to be treated.

Project Site: Project Location:

Runoff Depth, Q:

Table 1.

Structure Name	Imp. Area (acres)	A (miles ² )	t _c (min.)	t _c (hrs.)
HYDRO 5	0.23	0.000359	6.0	0.100
1	1			

(0.5" or 1")

Because only runoff from impervious surfaces is used in calculation of WQV, area is considered 100% impervious Therefore, CN = 98

Enter Ia/P Ratio for CN=98:

la/P = 0.034

(0.058 for Q=0.5" / 0.034 for Q=1")

Enter unit peak discharge, qu (csm/in) for Type III rainfall distribution, Ia/P, and tc: From Figure 2 (Q=0.5") or Figure 4 (Q=1")

1 "

Table 2.

Structure Name	tc (hours)	qu (csm/in)
HYDRO 5	0.100	774
2	0	
	1	
	1	1

WQF in cfs = (qu)(A)(Q), where:

WQF = water quality flow (cfs)

q_u = unit peak discharge (csm/in)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

From Table 2 above

Based on Area Type, from above

Table 3.

Structure Name	q _u (csm/in)	A (miles ² )	Q (in)	WQF (cfs)	Peak Flow (cfs)	Proposed Device ¹
HYDRO 5	774	0.000359	1	0.28	1	FD-3HC
-	9					
	-	-	_			
	-				-	

Tc	qu	Тс	qu	Tc	qu
(Hours)	(csm/in)	(Hours)	(csm/in)	(Hours)	(csm/in)
0.01	835	2.7	197	7.1	95
0.03	835	2.8	192	7.2	94
0.05	831	2.9	187	7.3	93
0.067	814	3	183	7.4	92
0.083	795	3.1	179	7.5	91
0.1	774	3.2	175	7.6	90
0.116	755	3.3	171	7.7	89
0.133	736	3.4	168	7.8	88
0.15	717	3.5	164	7.9	87
0.167	700	3.6	161	8	86
0.183	685	3.7	158	8.1	85
0.2	669	3.8	155	8.2	84
0.217	654	3.9	152	8.3	84
0.233	641	4	149	8.4	83
0.25	628	4.1	146	8.5	82
0.3	593	4.2	144	8.6	81
0.333	572	4.3	141	8.7	80
0.35	563	4.4	139	8.8	79
0.4	536	4.5	137	8.9	79
0.416	528	4.6	134	9	78
0.5	491	4.7	132	9.1	77
0.583	460	4.8	130	9.2	76
0.6	454	4.9	128	9.3	76
0.667	433	5	126	9.4	75
0.7	424	5.1	124	9.5	74
0.8	398	5.2	122	9.6	74
0.9	376	5.3	120	9.7	73
1	356	5.4	119	9.8	72
1.1	339	5.5	117	9.9	72
1.2	323	5.6	115	10	71
1.3	309	5.7	114		
1.4	296	5.8	112		
1.5	285	5.9	111		
1.6	274	6	109		
1.7	264	6.1	108		
1.8	255	6.2	106		
1.9	247	6.3	105		
2	239	6.4	104		
2.1	232	6.5	102		
2.2	225	6.6	101		
2.3	219	6.7	100		
2.4	213	6.8	99		
2.5	207	6.9	98		
2.6	202	7	96		

Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, Distribution

massoer of wate - Labe 1

#### , for Type III Storm



1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

- 2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
- 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row
- 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
- 5. Total TSS Removal = Sum All Values in Column D

	Location: CHAMBER 1		]		
	A BMP ¹	B TSS Removal Rate ¹	C Starting TSS Load*	D Amount Removed (B*C)	E Remaining Load (C-D)
reet	DEEP SUMP CBS	0.25	1.00	0.25	0.75
oval orksl	PROPRIETARY UNIT	0.80	0.75	0.60	0.15
TSS Removal ulation Works	INFIL. SYSTEM	0.80	0.15	0.12	0.03
TSS Removal Calculation Worksheet			1		
ů					Separate Form Needs to
	Designati		SS Removal =	0.97	be Completed for Each Outlet or BMP Train
	Project: Prepared By: Date:	THE COTTAGES ESPOSITO 12/12/22		*Equals remaining load from which enters the BMP	m previous BMP (E)

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

- 2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
- 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row
- 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
- 5. Total TSS Removal = Sum All Values in Column D

	Location: CHAMBER 2			]	
	A BMP ¹	B TSS Removal Rate ¹	C Starting TSS Load*	D Amount Removed (B*C)	E Remaining Load (C-D)
reet	DEEP SUMP CBS	0.25	1.00	0.25	0.75
oval	PROPRIETARY UNIT	0.80	0.75	0.60	0.15
TSS Removal ulation Works	INFIL. SYSTEM	0.80	0.15	0.12	0.03
TSS Removal Calculation Worksheet					
ö				0.97	Separate Form Needs to be Completed for Each
	Project: Prepared By: Date:	Total T THE COTTAGES ESPOSITO 12/12/22	SS Removal =	*Equals remaining load from which enters the BMP	Outlet or BMP Train

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

- 2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings
- 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row
- 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row
- 5. Total TSS Removal = Sum All Values in Column D

	Location: CHAMBER 3			]	
	A BMP ¹	B TSS Removal Rate ¹	C Starting TSS Load*	D Amount Removed (B*C)	E Remaining Load (C-D)
reet	DEEP SUMP CBS	0.25	1.00	0.25	0.75
oval orksl	PROPRIETARY UNIT	0.80	0.75	0.60	0.15
TSS Removal Calculation Worksheet	INFIL. SYSTEM	0.80	0.15	0.12	0.03
TSS					
Ca					
			SS Removal =	0.97	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project: Prepared By: Date:	THE COTTAGES ESPOSITO 12/12/22		*Equals remaining load from which enters the BMP	m previous BMP (E)

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	Location: CHAMBER 4					
	A BMP ¹	B TSS Removal Rate ¹	C Starting TSS Load*	D Amount Removed (B*C)	E Remaining Load (C-D)	
neet	DEEP SUMP CBS.	0.25	1.00	0.25	0.75	
moval Worksheet	PROPRIETARY UNIT	0.80	0.75	0.60	0.15	
Removal on Works	INFIL. SYSTEM	0.80	0.15	0.12	0.03	
TSS Rer Calculation /						
Cal						
		Total T	SS Removal =	0.97	Separate Form Needs to be Completed for Each Outlet or BMP Train	
	Project: Prepared By: Date:	THE COTTAGES ESPOSITO 12/12/22		*Equals remaining load from which enters the BMP	m previous BMP (E)	

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

# Construction Phase Pollution Prevention and Erosion and Sedimentation Plan

For:

# The Cottages at Old Oaken Bucket

279-281 Old Oaken Bucket Rd. Scituate, MA

Submitted to:

# Town of Scituate Zoning Board of Appeals

Dated: December 12, 2022

Prepared By Anthony Esposito, P.E. South Shore Survey Consultants, Inc. 167R Summer Street Kingston, MA 02364

## **TABLE OF CONTENTS**

Page
------

## Narrative

- Project Description	1
- Site Description	1
- Soils	1
Erosion and Sedimentation Control Best Management Practices (BMP's)	
- Structural Practices	2
- Stabilization Practices	7
- Dust Control	9
- Non-Stormwater Discharges	9
- Soil Stockpiling	9
- Anticipated Construction Schedule	10
- Inspection/Maintenance	10

## Appendix

- Inspection Schedule and Evaluation Checklist

## Plans

- Site plans

## <u>Construction Phase Pollution Prevention &</u> <u>Erosion and Sedimentation Control Plan</u>

Erosion and Sedimentation will be controlled at the site by utilizing Structural Practices, Stabilization Practices, and Dust Control. These practices correspond with the approved plans entitled "The Cottages at Old Oaken Bucket, A Comprehensive Permit Plan of Land in Scituate MA", prepared by South Shore Survey Consultants, Inc., hereinafter referred to as the Site Plan.

Responsible Party/Property Owner/Developer contact information:

Lovendale, LLC s/o Salt Meadow Development 107 East St. Duxbury, MA 02332 (781) 727-2195

Town of Scituate Contact Information:

Department of Public Works Kevin Cafferty, Director of Public Works Scituate Town Hall 600 Chief Justice Cushing Way Scituate, MA 02066 Phone: (781) 545-8732

## Narrative:

#### **Project Description:**

The applicant, Lovendale, LLC, proposes to build 24 units for residential dwellings.

#### **Site Description:**

The subject property is located 279-281 Old Oaken Bucket Rd. in Scituate, MA. The site contains three abandoned dwellings.

#### Soils:

Soils information was obtained from the USDA Natural Resources Conservation Service's (NRCS) Web Soil Survey mapping Site soils are classified as SCS Hydrologic Soil Groups: Canton fine sandy loam, 0 to 8 percent slopes, very stony, (421B- SCS Hydrologic Soil Group B) and Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony, (427B - SCS Hydrologic Soil Group B) . Refer to the Soil Survey Map for a delineation of the boundaries of the soils with respect to the study area.

## **Erosion and Sedimentation Control Practices:**

## **Structural Practices:**

 <u>Straw Wattle Barrier Controls</u> – Straw wattle barriers may be used in lieu of haybale and silt fence barrier controls and placed along downward slopes at the limit of work locations. This control will be installed prior to major soil disturbance on the site. The selected barrier control shall be installed as shown on the approved subdivision plans and the manufacturers recommendations.

#### <u>Filtermitt Design/Installation Requirements *</u> * (included on Inspection/Evaluation Checklist)

a) Filtermitt should be placed lengthwise on the contour, with the ends of adjacent sock tightly abutting one another and overlapping on the ground surface (not one over another) per manufacturer instructions.

b) The barrier should be placed on natural ground and staked on either side or through the barrier per manufacturer requirements.

c) Filtermitt should be removed when they have served their usefulness, but not before the upslope areas have been permanently stabilized.

#### Filtermitt Inspection/Maintenance *

- a) Straw wattle barriers should be inspected immediately after each runoffproducing rainfall and at least daily during prolonged rainfall.
- b) Close attention should be paid to the repair of damaged barriers, undercutting beneath the barrier, and flow around the ends of the barrier.
- c) Necessary repairs to barriers or replacement of bales should be completed promptly.
- d) Sediment deposits should be checked after each runoff-producing rainfall. They must be removed when the level of deposition reaches approximately one-half the height of the barrier.
- e) Any sediment deposits remaining in place after the barrier is no longer required should be dressed to conform to the existing grade, prepared and seeded.
- <u>Inlet Protection</u> Inlet Protection will be utilized around the catch basin grates. The inlet protection will allow the storm drain inlets to be used before final stabilization. This structural practice will allow early use of the drainage system if the detention basin is already stabilized. Siltsack or equivalent will be utilized for the inlet

protection. Siltsack is manufactured by ACF Environmental. Regular flow siltsack will be utilized, and if it does not allow enough storm water flow, hi-flow siltsack will be utilized.

#### Silt Sack (or equivalent) Inlet Protection Inspection/Maintenance Requirements *

- a) All trapping devices and the structures they protect should be inspected after every rain storm and repairs made as necessary.
- b) Sediment should be removed from the trapping devices after the sediment has reached a maximum depth of one-half the depth of the trap.
- c) Oil build-up should be removed by using a small portable pump and disposed of in accordance with all applicable local, state, and federal regulations.
- d) Sediment should be disposed of in a suitable area and protected from erosion by either structural or vegetative means. Sediment removed shall be disposed of in accordance with all applicable local, state, and federal regulations.
- e) The silt sack must be replaced if it is ripped or torn in any way.
- f) Temporary traps should be removed and the area repaired as soon as the contributing drainage area to the inlet has been completely stabilized.

## **Stabilization Practices:**

Stabilization measures shall be implemented as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased, with the following exceptions.

- Where the initiation of stabilization measures by the 14th day after construction activity temporary or permanently cease is precluded by snow cover, stabilization measures shall be initiated as soon as practicable.
- Where construction activity will resume on a portion of the site within 21 days from when activities ceased, (e.g. the total time period that construction activity is temporarily ceased is less than 21 days) then stabilization measures do not have to be initiated on that portion of the site by the 14th day after construction activity temporarily ceased.
- A temporary sedimentation basin shall be provided prior to the road drainage system being installed and sized per the approved plans.
- 1) <u>**Temporary Seeding**</u> Temporary seeding will allow a short-term vegetative cover on disturbed site areas that may be in danger of erosion. Temporary seeding will be done at stock piles and disturbed portions of the site where construction activity will

temporarily cease for at least 21 days. The temporary seedings will stabilize cleared and unvegetated areas that will not be brought into final grade for several weeks or months.

#### Temporary Seeding Planting Procedures *

- a) Planting should preferably be done between April 1st and June 30th, and September 1st through September 31st. If planting is done in the months of July and August, irrigation may be required. If planting is done between October 1st and March 31st, mulching should be applied immediately after planting. If seeding is done during the summer months, irrigation of some sort will probably be necessary.
- b) Before seeding, install structural practice controls. Utilize Amoco supergro or equivalent.
- c) The seedbed should be firm with a fairly fine surface. Perform all cultural operations across or at right angles to the slope. A minimum of 2 to 4-inches of tilled topsoil is required. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content.
- d) Apply uniformly 2 tons of ground limestone per acre (100 lbs. Per 1,000 sq.ft.) or according to soil test. Apply uniformly organic or non-nitrogen fertilizers at the rate of 400 lbs. per acre (14 lbs. per 1,000 sq.ft.) or as indicated by soil test. Forty percent of the nitrogen should be in organic form. Work in lime and fertilizer to a depth of 4-inches using any suitable equipment.

Species	Seeding Rate	Seeding Rate	Recommended Seeding	Seed Cover
	(lbs/1,000 sq.ft.)	(lbs/acre)	Dates	required
Annual	1	40	April 1 st to June 1 st	¹ / ₄ inch
Ryegrass			August 15 th to Sept. 15 th	
Foxtail	0.7	30	May 1 st to June 30 th	¹ / ₂ to ³ / ₄ inch
Millet				
Oats	2	80	April 1 st to July 1 st	1 to $1 - \frac{1}{2}$ inch
			August 15 th to Sept. 15 th	
Winter Rye	3	120	August $15^{\text{th}}$ to Oct. $15^{\text{th}}$	1 to $1 - \frac{1}{2}$ inch

e) Select the appropriate seed species for temporary cover from the following table.

Apply the seed uniformly by hydroseeding, broadcasting, or by hand.

f) Use an effective mulch, such as clean grain straw; tacked and/or tied with netting to protect seedbed and encourage plant growth.

#### Temporary Seeding Inspection/Maintenance *

a) Inspect within 6 weeks of planting to see if stands are adequate. Check for damage within 24 hours of the end to a heavy rainfall, defined as a 2-year storm

event (i.e., 3.2 inches of rainfall within a twenty-four hour period). Stands should be uniform and dense. Fertilize, reseed, and mulch damaged and sparse areas immediately. Tack or tie down mulch as necessary.

- b) Seeds should be supplied with adequate moisture. Furnish water as needed, especially in abnormally hot or dry weather. Water application rates should be controlled to prevent runoff.
- 2) <u>Geotextiles</u> Geotextiles such as jute netting will be used in combination with other practices such as mulching to stabilize slopes. The following geotextile materials or equivalent are to be utilized for structural and nonstructural controls as shown in the following table.

Practice	Manufacturer	Product	Remarks
Construction	Amoco	Woven polypropylene	0.300 mm opening
Entrance		2002 or equivalent	
Outlet	Amoco	Nonwoven	0.150 mm opening
Protection		polypropylene 4551 or	
		equivalent	
Erosion Control	Amoco	Supergro or equivalent	Erosion control
(slope stability)			revegetation mix, open
			polypropylene fiber on
			degradable polypropylene
			net scrim

Amoco may be reached at (800) 445-7732

#### Geotextile Installation

a) Netting and matting require firm, continuous contact between the materials and the soil. If there is no contact, the material will not hold the soil and erosion will occur underneath the material.

#### Geotextile Inspection/Maintenance *

- a) In the field, regular inspections should be made to check for cracks, tears, or breaches in the fabric. The appropriate repairs should be made.
- 3) <u>Mulching and Netting</u> Mulching will provide immediate protection to exposed soils during the period of short construction delays, or over winter months through the application of plant residues, or other suitable materials, to exposed soil areas. In areas, which have been seeded either for temporary or permanent cover, mulching should immediately follow seeding. On steep slopes, mulch must be supplemented with netting. The preferred mulching material is straw.

#### Mulch (Hay or Straw) Materials and Installation

a) Straw has been found to be one of the most effective organic mulch materials. The specifications for straw are described below, but other material may be appropriate. The straw should be air-dried; free of undesirable seeds & coarse materials. The application rate per 1,000 sq.ft. is 90-100 lbs. (2-3 bales) and the

#### **Construction Phase Pollution Prevention & Erosion and Sedimentation Control Plan Page 5 of 11**

application rate per acre is 2 tons (100-120 bales). The application should cover about 90% of the surface. The use of straw mulch is appropriate where mulch is maintained for more than three months. Straw mulch is subject to wind blowing unless anchored, is the most commonly used mulching material, and has the best microenvironment for germinating seeds.

#### Mulch Maintenance *

- a) Inspect after rainstorms to check for movement of mulch or erosion. If washout, breakage, or erosion occurs, repair surface, reseed, remulch, and install new netting.
- b) Straw or grass mulches that blow or wash away should be repaired promptly.
- c) If plastic netting is used to anchor mulch, care should be taken during initial mowings to keep the mower height high. Otherwise, the netting can wrap up on the mower blade shafts. After a period of time, the netting degrades and becomes less of a problem.
- d) Continue inspections until vegetation is well established.
- 4) <u>Land Grading</u> Grading on fill slopes, cut slopes, and stockpile areas will be done with full siltation controls in place.

#### Land Grading Design/Installation Requirements

- a) Areas to be graded should be cleared and grubbed of all timber, logs, brush, rubbish, and vegetated matter that will interfere with the grading operation. Topsoil should be stripped and stockpiled for use on critical disturbed areas for establishment of vegetation. Cut slopes to be topsoiled should be thoroughly scarified to a minimum depth of 3-inches prior to placement of topsoil.
- b) Fill materials should be generally free of brush, rubbish, rocks, and stumps. Frozen materials or soft and easily compressible materials should not be used in fills intended to support buildings, parking lots, roads, conduits, or other structures.
- c) Earth fill intended to support structural measures should be compacted to a minimum of 90 percent of Standard Proctor Test density with proper moisture control, or as otherwise specified by the engineer responsible for the design. Compaction of other fills should be to the density required to control sloughing, erosion or excessive moisture content. Maximum thickness of fill layers prior to compaction should not exceed 9 inches.
- d) The uppermost one foot of fill slopes should be compacted to at least 85 percent of the maximum unit weight (based on the modified AASHTO compaction test). This is usually accomplished by running heavy equipment over the fill.

e) Fill should consist of material from borrow areas and excess cut will be stockpiled in areas shown on the Site Plans. All disturbed areas should be free draining, left with a neat and finished appearance, and should be protected from erosion.

#### Land Grading Stabilization Inspection/Maintenance *

- a) All slopes should be checked periodically to see that vegetation is in good condition. Any rills or damage from erosion and animal burrowing should be repaired immediately to avoid further damage.
- b) If seeps develop on the slopes, the area should be evaluated to determine if the seep will cause an unstable condition. Subsurface drains or a gravel mulch may be required to solve seep problems. However, no seeps are anticipated.
- c) Areas requiring revegetation should be repaired immediately. Slopes should be limed and fertilized as necessary to keep vegetation healthy. Control undesirable vegetation such as weeds and woody growth to avoid bank stability problems in the future.
- 5) <u>**Topsoiling** *</u> Topsoiling will help establish vegetation on all disturbed areas throughout the site during the seeding process. The soil texture of the topsoil to be used will be a sandy loam to a silt loam texture with 15% to 20% organic content.

## **Topsoiling Placement**

- a) Topsoil should not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or when conditions exist that may otherwise be detrimental to proper grading or proposed seeding.
- b) Do not place topsoil on slopes steeper than 2:1, as it will tend to erode. Any proposed grass slope steeper than 2.5:1 shall be provided with erosion control blankets.
- c) If topsoil and subsoil are not properly bonded, water will not infiltrate the soil profile evenly and it will be difficult to establish vegetation. The best method is to actually work the topsoil into the layer below for a depth of at least 6 inches.
- 6) <u>Preserving Natural Vegetation</u> The trees to be saved will be clearly flagged or marked with a bright colored ribbon. Snow fencing will be set at the drip/spread line of the trees and shrubs to be protected. Machinery will be kept away from tree roots.
- 7) <u>Permanent Seeding</u> Permanent Seeding should be done immediately after the final design grades are achieved. Native species of plants should be used to establish perennial vegetative cover on disturbed areas. The revegetation should be done early enough in the fall so that a good cover is established before cold weather comes and

growth stops until the spring. A good cover is defined as vegetation covering 75 percent or more of the ground surface.

#### Permanent Seeding Seedbed Preparation

- a) In fertile or coarse-textured subsoil, it is best to stockpile topsoil and respread it over the finished slope at a minimum 2 to 6-inch depth and roll it to provide a firm seedbed. The topsoil must have a sandy loam to silt loam texture with 15% to 20% organic content. If construction fill operations have left soil exposed with a loose, rough, or irregular surface, smooth with blade and roll.
- b) Loosen the soil to a depth of 3-5 inches with suitable agricultural or construction equipment.
- c) Areas not to receive topsoil shall be treated to firm the seedbed after incorporation of the lime and fertilizer so that it is depressed no more than  $\frac{1}{2}$  1 inch when stepped on with a shoe. Areas to receive topsoil shall not be firmed until after topsoiling and lime and fertilizer is applied and incorporated, at which time it shall be treated to firm the seedbed as described above.

#### Permanent Seeding Grass Selection/Application

- a) Select an appropriate cool or warm season grass based on site conditions and seeding date. Apply the seed uniformly by hydroseeding, broadcasting, or by hand. Uniform seed distribution is essential. On steep slopes, hydroseeding may be the most effective seeding method. Surface roughening is particularly important when preparing slopes for hydroseeding.
- b) Lime and fertilize. Organic fertilizer shall be utilized in areas within the 100 foot buffer zone to a wetland resource area.
- c) Mulch the seedings with straw applied at the rate of ½ tons per acre. Anchor the mulch with erosion control netting or fabric on sloping areas. Amoco supergro or equivalent should be utilized.

#### Permanent Seeding Inspection/Maintenance *

- a) Frequently inspect seeded areas for failure and make necessary repairs and reseed immediately. Conduct or follow-up survey after one year and replace failed plants where necessary.
- b) If vegetative cover is inadequate to prevent rill erosion, overseed and fertilize in accordance with soil test results.
- c) If a stand has less than 40% cover, reevaluate choice of plant materials and quantities of lime and fertilizer. Re-establish the stand following seedbed preparation and seeding recommendations, omitting lime and fertilizer in the

absence of soil test results. If the season prevents resowing, mulch or jute netting is an effective temporary cover.

d) Seeded areas should be fertilized during the second growing season. Lime and fertilize thereafter at periodic intervals, as needed. Organic fertilizer shall be utilized in areas within the 100 foot buffer zone to a wetland resource area.

## Dust Control *:

Dust control will be utilized throughout the entire construction process of the site. For example, keeping disturbed surfaces moist during windy periods will be an effective control measure, especially for construction haul roads. The use of dust control will prevent the movement of soil to offsite areas. However, care must be taken to not create runoff from excessive use of water to control dust. The following are methods of Dust Control that may be used on-site:

- Vegetative Cover The most practical method for disturbed areas not subject to traffic.
- Calcium Chloride Calcium chloride may be applied by mechanical spreader as loose, dry granules or flakes at a rate that keeps the surface moist but not so high as to cause water pollution or plant damage.
- Sprinkling The site may be sprinkled until the surface is wet. Sprinkling will be effective for dust control on haul roads and other traffic routes.
- Stone Stone will be used to stabilize construction roads; will also be effective for dust control.

## Non-Stormwater Discharges:

During construction activities at the site, some water from the site will be suitable for discharge to the drainage system or temporary sediment basin areas.

The construction de-watering and all non-stormwater discharges will be directed into a sediment dirt bag (or equivalent inlet protection) or a sediment basin. Sediment material removed shall be disposed of in accordance with all applicable local, state, and federal regulations.

The developer and site general contractor will comply with the E.P.A.'s Final General Permit for Construction De-watering Discharges, (N.P.D.E.S., Section 402 and 40 C.F.R. 122.26(b)(14)(x).

## Soil Stockpiling *:

Topsoil and subsoil from the roadway grading will be stockpiled in locations temporarily in the private lots.

#### Stockpile Material Construction Procedure

- 1) Topsoil and subsoil that are stripped will be stockpiled for later distribution on disturbed areas.
- 2) The stockpiles shall be located beyond 100 lf of the wetlands.
- 3) Seed the stockpiles with a temporary erosion control mix if the stockpile is to remain undisturbed for more than 30 days. The stockpiles must be stable and the side slopes should not exceed 2:1.
- 4) Filtermitt or equal erosion control measures should be placed surrounding each stockpile.
- 5) As needed, the stockpiled topsoil and subsoil are redistributed throughout the site.

## Anticipated Construction Schedule:

To prevent excessive erosion and silting, the following construction sequence coupled with other widely accepted principals for reducing erosion and sedimentation shall be implemented in the development of the site.

- 1. Obtain all plan approvals and other applicable permits.
- 2. Flag the work limits and mark trees and buffer areas for protection.
- 3. Install straw wattle barriers at locations indicated on the construction drawings and construct stabilized construction entrance.
- 4. Clear and grub all areas associated with the construction area.
- 5. Commense initial grading of the roads.
- 6. Construct the roadway stormwater system as soon as practicable after the proposed locations have been cleared.
- 7. Direct runoff to temporary sediment settling areas. No stormwater shall be allowed to discharge to the subsurface infiltration system until all tributary areas are fully stabilized.
- 8. Rough grade the building areas. Excavate crushed stone and subsoil from cut and fill areas and stockpile. Consideration should be given to locating stockpiles on the uphill side of disturbed areas, where possible, to act as temporary diversions.
- 9. After the site is stabilized, remove all temporary measures and install permanent vegetation on disturbed areas. Adequate growth for stabilization is defined as vegetation covering 75% or more of the ground surface.
- 10. Estimated time before final stabilization is 4 years of completed construction.

## **Inspection/Maintenance:**

Operator personnel must inspect the construction site at least once every 7 calendar days and within 24 hours of a storm event of 2-inch or greater. The applicant shall be responsible to secure the services of a licensed engineer or similar professional (inspector) on an on-going basis throughout all phases of the project. Refer to the Inspection/Maintenance Requirements presented earlier in the "Structural and Stabilization Practices." The inspector should review the erosion and sediment controls with respect to the following:

- Whether or not the measure was installed/performed correctly.
- Whether or not there has been damage to the measure since it was installed or performed.
- What should be done to correct any problems with the measure.

The inspector should complete the Stormwater Management Construction Phase BMP Inspection Schedule and Evaluation Checklist, as attached, for documenting the findings and should request the required maintenance or repair for the pollution prevention measures when the inspector finds that it is necessary for the measure to be effective. The inspector should notify the appropriate person to make the changes and submit copies of the form to the Brockton Planning Board upon request.

It is essential that the inspector document the inspection of the pollution prevention measures. These records will be used to request maintenance and repair and to prove that the inspection and maintenance were performed. The forms list each of the measures to be inspected on the site, the inspector's name, the date of the inspection, the condition of the measure/area inspected, maintenance or repair performed and any changes which should be made to the Pollution Prevention & Erosion and Sedimentation Control Plan to control or eliminate unforeseen pollution of storm water.

# Property Location:The Cottages Old Oaken Bucket Rd. Scituate, MADate:Stormwater Management – Construction Period and Long Term Pollution Prevention PlanBest Management Practices – Inspection Schedule and Evaluation Checklist

## Long Term Practices

Best Management Practice	Inspection Frequency (1)	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check (1)	Cleaning/Repair Needed: Uyes Ono (List Items)	Date of Cleaning/ Repair	Performed by
Catch Basins				Sediment level, accumulation of oil, accumulation of floating debris.			
Chamber Beds				Carryover of sediment level, oil, or floating debris.			
Proprietary Treatment units				Sediment level, accumulation of oil, accumulation of floating debris.			

(1) Refer to the Massachusetts Stormwater Management, Volume Two: MA Stormwater Handbook (Feb. 2008) for recommendations regarding frequency for inspection and maintenance of specific BMP's.

# Post-Construction Phase Best Management Practices Operation and Maintenance Plan & Long-Term Pollution Prevention Plan

For:

# The Cottages at Old Oaken Bucket

279-281 Old Oaken Bucket Rd. Scituate, MA

Submitted to:

# Town of Scituate Zoning Board of Appeals

Dated: January 4, 2022

Prepared By Anthony Esposito, P.E. South Shore Survey Consultants, Inc. 167R Summer Street Kingston, MA 02364

## TABLE OF CONTENTS

Post-Development Best Management Practices (BMP's) Operation and Maintenance Plan					
- Responsible Party		1			
- Operation		1			
- Maintenance		2			
- Maintenance Resp	onsibilities	3			
Long-Term Pollution Pre	vention Plan				
- Good House Keep	ing	3			
- Storage and Dispo	sal of Household Waste and Toxics	3			
- Landscape Mainte	nance	4			
- Integrated Pest Ma	nagement (IPM)	5			
- Proper Manageme	nt of Deicing Chemicals and Snow	5			

Page

## <u>Post-Construction Best Management Practices (BMPs)</u> <u>Operation and Maintenance Plan</u>

Responsible Party/Property Owner/Developer contact information:

Lovendale, LLC s/o Salt Meadow Development 107 East St. Duxbury, MA 02332 (781) 727-2195

Town of Scituate Contact Information:

Department of Public Works Kevin Cafferty, Director of Public Works Scituate Town Hall 600 Chief Justice Cushing Way Scituate, MA 02066 Phone: (781) 545-8732

Best Management Practices (BMPs) of the Commonwealth of Massachusetts Department of Environmental Protection's (DEP's) Stormwater Management Policy (SMP) have been implemented and utilized for the project. The following information provided is to be used as a guideline for monitoring and maintaining the performance of the drainage facilities and to ensure that the quality of water runoff meets the standards set forth by the SMP. The structural Best Management Practices (BMPs) shall be inspected during rainfall conditions during the first year of operation to verify functionality.

BMPs included in the design consist of the use of:

- Deep Sump Catch Basins
- Proprietary Treatment units
- Infiltration chambers

## **Operation:**

Once the site has been permanently stabilized and the stormwater facilities are online, the operation of the stormwater management system will function as intended. Stormwater runoff from the paved areas are directed into the infiltration chambers where it will recharge the groundwater table. The beds have been designed to convey peak flows for the 2-year, 10-year and the 100-year storm event.

## Maintenance:

1. <u>Roadway Maintenance</u> – Vacuum sweepers shall sweep paved areas periodically during dry weather to remove excess sediments to reduce the amount of sediments that the drainage system shall have to remove from the runoff. The sweeping should be conducted on a semiannual basis before April 30th and after November 15th.

Salt used for de-icing on the pavement during winter months shall be limited as much as possible as this will reduce the need for removal and treatment. Sand containing the minimum amount of calcium chloride (or approved equivalent) needed for handling may be applied as part of the routine winter maintenance activities. Estimated annual budget \$1000.

- 2. <u>Catch Basins</u> Catch basin grates shall be inspected twice per year, in the spring following snow-melt and in the fall following leaf drop and following heavy rainfalls, defined as a storm event exceeding two inch of rainfall within a twenty-four hour period to verify that the inlet openings are not clogged by debris. Debris shall be removed from the grates and disposed of properly. Deep sump and hooded catch basins shall be inspected quarterly to check oil build-up and outlet obstructions and cleaned of all accumulated sediments as warranted by inspections. Oil build-up shall be removed by using a small portable pump and disposed of properly. Material shall be removed from catch basins and disposed of in accordance with all applicable local, state, and federal regulations. Estimated annual budget \$800.
- 3. <u>Subsurface Infiltration galleys</u> The subsurface infiltration galleys for the subdivision shall be checked for siltation accumulation on a quarterly basis through the lawn grate inspection ports. Additional inspections should be scheduled during the first few months after construction to make sure that no debris or silt has accumulated during construction. Silt, sand and sediment, if significant accumulation occurs, shall be removed by vacuum annually. Material removed from the bed shall be disposed of in accordance with all applicable local, state, and federal regulations.

Any slope erosion within the facilities shall be stabilized and repaired as soon as practical. The galley bed shall be inspected annually for debris, sediment and structural integrity. The inspections shall be conducted by a licensed engineer or qualified professional (inspector). Estimated annual budget \$1000.

4. <u>Pre-treatment units, (i.e. Hydro International)</u> - The pre-treatment units shall be checked on a semiannual basis and following heavy rainfalls, defined as a storm event exceeding one inch of rainfall within a twenty-four hour period to verify that the inlet openings are not clogged by debris. Debris shall be removed and disposed of properly. Treatment chambers shall be inspected and cleaned semi-annually of all accumulated sediments. Any oily liquid shall be removed prior to the removal of any sediment removal activities in order to minimize the re-suspension or re-mixing of oil and water. Oil build-up shall be removed by using a small portable pump, absorbent pillows or other measures and disposed of properly. Accumulated sediment 18 inches in depth or greater shall be removed. Sediment shall be removed from the unit using a vacuum truck. Material shall be removed from the pretreatment unit and disposed of in accordance with all applicable local, state, and federal regulations. Estimated annual budget \$800.

## Maintenance Responsibilities:

All post construction maintenance activities will be documented and kept on file. Annual inspection reports in the form of an Evaluation Checklist and a cover letter **shall be kept on file to be provided to local Town officials when requested** 

## Long-Term Pollution Prevention Plan

## **Good Housekeeping:**

To develop and implement an operation and maintenance program with the goal of preventing or reducing pollutant runoff by keeping potential pollutants from coming into contact with stormwater or being transported off site without treatment, the following efforts will be made:

- Property Management awareness and training on how to incorporate pollution prevention techniques into maintenance operations.
- Follow appropriate best management practices (BMPs) by proper maintenance and inspection procedures.

## **Storage and Disposal of Household Waste and Toxics:**

This management measure involves educating the general public on the management considerations for hazardous materials. Failure to properly store hazardous materials dramatically increases the probability that they will end up in local waterways. Many people have hazardous chemicals stored throughout their homes, especially in garages and storage sheds. Practices such as covering hazardous materials or even storing them properly, can have dramatic impacts. Property owners are encouraged to contract with a hazardous waste collection company as required for removal of the waste.

MADEP has prepared several materials for property owners on how to properly use and dispose of household hazardous materials:

#### http://www.mass.gov/dep/recycle/reduce/househol.htm

For consumer questions on household hazardous waste call the following number:

## DEP Household Hazardous Waste Hotline 800-343-3420

The following is a list of management considerations for hazardous materials as outlined by the EPA:

- Ensuring sufficient aisle space to provide access for inspections and to improve the ease of material transport;
- Storing materials well away from high-traffic areas to reduce the likelihood of accidents that might cause spills or damage to drums, bags, or containers.

- Stacking containers in accordance with the manufacturers' directions to avoid damaging the container or the product itself;
- Storing containers on pallets or equivalent structures. This facilitates inspection for leaks and prevents the containers from coming into contact with wet floors, which can cause corrosion. This consideration also reduces the incidence of damage by pests.

The following is a list of commonly used hazardous materials used in the household:

Batteries - automotive and rechargeable nickel cadmium batteries (no alkaline batteries) Gasoline Oil-based paints Fluorescent light bulbs and lamps Pool chemicals Propane tanks Lawn chemicals, fertilizers and weed killers Turpentine Bug sprays Antifreeze Paint thinners, strippers, varnishes and stains Arts and crafts chemicals Charcoal lighter fluid

Disinfectant Drain clog dissolvers Driveway sealer Flea dips, sprays and collars Houseplant insecticides Metal polishes Mothballs Motor oil and filters Muriatic acid (concrete cleaner) Nail polishes and nail polish removers Oven cleaner Household pest and rat poisons Rug and upholstery cleaners Shoe polish Windshield wiper fluid

## Landscape Maintenance:

This management measure seeks to control the storm water impacts of landscaping and lawn care practices through education and outreach on methods that reduce nutrient loadings and the amount of storm water runoff generated from lawns. Nutrient loads generated by fertilizer use on suburban lawns can be significant, and recent research has shown that lawns produce more surface runoff than previously thought.

Using proper landscaping techniques can effectively increase the value of a property while benefiting the environment. These practices can benefit the environment by reducing water use; decreasing energy use (because less water pumping and treatment is required); minimizing runoff of storm and irrigation water that transports soils, fertilizers, and pesticides; and creating additional habitat for plants and wildlife. The following lawn and landscaping management practices will be encouraged:

- Mow lawns at the highest recommended height.
- Minimize lawn size and maintain existing native vegetation.
- Raise public awareness for promoting the water efficient maintenance practices by informing users of water efficient irrigation techniques and other innovative approaches to water conservation.

- Abide by water restrictions and other conservation measures implemented by the Town of Duxbury.
- Water only when necessary.

## **Integrated Pest Management (IPM):**

This management measure seeks to limit the adverse impacts of insecticides and herbicides by providing information on alternative pest control techniques other than chemicals or explaining how to determine the correct dosages needed to manage pests.

The presence of pesticides in stormwater runoff has a direct impact on the health of aquatic organisms and can present a threat to humans through contamination of drinking water supplies. The pesticides of greatest concern are insecticides, such as diazinon and chloropyrifos, which even at very low levels can be harmful to aquatic life. The major source of pesticides to urban steams is home application of products designed to kill insects and weeds in the lawn and garden. The following IPM practices will be encouraged:

- Lawn care and landscaping management programs including appropriate pesticide use management as part of program.
- Raise public awareness by referring homeowners to "A Homeowner's Guide to Environmentally Sound Lawncare, Maintaining a Healthy Lawn the IPM Way", Massachusetts Department of Food and Agriculture, Pesticide Bureau or link <u>http://www.mass.gov/dep/water/resources/nonpoint.htm#megaman</u>>

## **Proper Management of Deicing Chemicals and Snow:**

The following deicing chemicals and snow storage practices will be encouraged:

- Select effective snow disposal sites adjacent to or on pervious surfaces in upland areas away from water resources and wells. At these locations, the snow meltwater can filter in to the soil, leaving behind sand and debris, which can be removed in the springtime.
- No roadway deicing materials shall be stockpiled on site unless all storage areas are protected from exposure to rain, snow, snowmelt and runoff.
- Avoid dumping snow into any on-site or off-site waterbody, including wetlands, cranberry bogs, detention/infiltration basins, and grassed swales/channels.
- Avoid disposing of snow on top of storm drain catch basins.

#### Form 11 - SOIL EVALUATOR FORM Page 1

## Commonwealth of Massachusetts Scituate, Massachusetts <u>Soil Suitability Assessment for On-Site Septic System</u>

Performed By: Anthony Esposito, South Shore Survey Consultants Inc.

Witnessed By: Peter Falabella,, Scituate Board of Health

Location, Address, or Lot #	Owner's Name, Address, and Telephone #		
279 Old Oaken Bucket Rd.	US Bank National Assc. Trust s/o Lovendale LLC		
Scituate, MA	107 East St.		
Assessors # 41-1-3	Duxbury, MA 02332		
New Construction X Repair			
Office Review			
Published Soil Survey Available: No	Yes 🗵		
Year Published 2019 Publication Scale	<u>1:12,000</u> Soil Map Unit <u>427B</u>		
Drainage Class <u>B</u> Soil Limitations	High Water Table		
Surficial Geologic Report Available: No	Yes 🔀		
Year Published 2019 Publication Scale 1:12,00	0		
Geologic Material (Map Unit) eiolian deposi	sts		
Landform <u>outwash plain</u>			
Flood Insurance Rate Map:			
Above 500 year flood boundary No $\Box$	Yes 🔀		
Within 500 year flood boundary No	Yes 🛛		
Within 100 year flood boundary No	Yes 🛛		
Wetland Area:			
National Wetland Inventory Map (map unit)	N/A		
Wetlands Conservancy Program Map (map u	nit) N/A		
Current Water Resource Conditions (USGS):	Month December 2019		
Range: Above Normal	Normal  Below Normal		
Other References Reviewed: None			

#### Form 11 - SOIL EVALUATOR FORM Page 2

## **On-Site Review**

Deep Hole Number <u>T.P 1</u> Date	12-13-2019	Time: 9 AM Weather:	sunny 40s	
Location (identify on site plan)	north of onsite Up	pole		
Land Use vacant Slope	e (%) 5%	Surface Stones<1%		
Vegetation oaks and maple	es			
Landform outwash plain				
Position on Landscape (see septio	c plan)			
Distances from:				
Open Water Body	<u>200+</u> feet	Drainage way	>25	feet
Possible Wet Area	<u>50+</u> feet	Property Line	>10	feet
Drinking Water Well	100+ feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-12"	А	SL	10yr3/3	-	
12-26"	В	LS	10yr5/6	mottles@ 24" 7.5y6/4	
45"-96"	С	SL	2.5y5/2		firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >96"

 Depth to Groundwater:
 Standing Water in the Hole:
 90"
 Weeping from Pit Face:
 44"

 Estimated Seasonal High Ground Water?
 24"

#### Form 11 - SOIL EVALUATOR FORM Page 3

## **On-Site Review**

Deep Hole Number T.P 2 Date 12-13-2019	_Time: <u>9 AM</u> Weather:	sunny 40s	_
Location (identify on site plan) <u>north of onsite Upo</u>	ole		
Land Use vacant Slope (%) 5%	_Surface Stones <1%		_
Vegetation oaks and maples		-	
Landform outwash plain		-	
Position on Landscape (see septic plan)			
Distances from:			
Open Water Body <u>200+</u> feet	Drainage way	>25	feet
Possible Wet Area <u>50+</u> feet	Property Line	>10	feet
Drinking Water Well <u>100+</u> feet	Other	N/A	feet

## **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr3/3	-	
10-22"	В	LS	10yr5/6		
22"-94"	С	SL	2.5y5/2	mottles@ 40" 7.5y6/4	firm, 40% stones 50% gravel

## **On-Site Review**

Deep Hole Number T.P 3 Date 12-13-2019	Time: <u>10 AM</u> Weather: <u>sunny 40s</u>
Location (identify on site plan) <u>north of onsite Upc</u>	le
Land Use Vacant Slope (%) 5%	_Surface Stones<1%
Vegetation oaks and maples	
Landform outwash plain	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-11"	А	SL	10yr3/3	-	
11-28"	В	LS	10yr5/6	mottles@ 27" 7.5y6/4	
28"-95"	С	SL	2.5y5/2		firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >95"

 Depth to Groundwater:
 Standing Water in the Hole:
 61"
 Weeping from Pit Face:
 61"

 Estimated Seasonal High Ground Water?
 27"
 27"
 27"

## **On-Site Review**

Deep Hole Number T.P 4 Date 12-13-2019	Time: <u>10 AM</u> Weather: <u>sunny 40s</u>
Location (identify on site plan) <u>north of onsite Upc</u>	le
Land Use vacant Slope (%) 5%	_Surface Stones<1%
Vegetation oaks and maples	
Landform outwash plain	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-12"	А	SL	10yr3/3	-	
12-24"	В	LS	10yr5/6		
24"-85"	С	SL	2.5y5/2	mottles@ 30" 7.5y6/4	firm, 40% stones 50% gravel

## **On-Site Review**

Deep Hole Number <u>T.P 5</u> Date	12-13-2019	Time:11AM W	/eather: <u>sunny 40</u>	s
Location (identify on site plan)	west of gravel of	lrive at entrance		
Land Use vacant Slope	e (%) <u> </u>	Surface Stones	<1%	
Vegetation oaks and maple	s			
Landform outwash plain				
Position on Landscape (see septio	plan)			
Distances from:				
Open Water Body	<u>200+</u> feet	Drainage	e way>25	feet
Possible Wet Area	<u>50+</u> feet	Property	Line>10	feet
Drinking Water Well	100+ feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-12"	А	SL	10yr3/3	-	
12-26"	В	LS	10yr5/6		
24"-84"	С	SL	2.5y5/2	mottles@ 36" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >84"

 Depth to Groundwater:
 Standing Water in the Hole:
 58"
 Weeping from Pit Face:
 48"

 Estimated Seasonal High Ground Water?
 36"

**On-Site Review** 

Deep Hole Number <u>T.P 6</u> Date	12-13-20	19	Time:	11 AM Weather	sunny 40s	
Location (identify on site plan)	east of gr	avel drive	at entran	ce	_	
Land Use vacant Slope	(%)	5%	Surface	Stones <1%		
Vegetation oaks and maple	s					
Landform <u>outwash plain</u>						
Position on Landscape (see septic	plan)					
Distances from:						
Open Water Body	200+	feet		Drainage way	>25	feet
Possible Wet Area	50+	feet		Property Line	>10	feet
Drinking Water Well	100+	feet		Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-11"	А	SL	10yr3/3	-	
11-20"	В	LS	10yr5/6		
20"-77"	С	SL	2.5y5/2	mottles@ 33" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >77"

 Depth to Groundwater:
 Standing Water in the Hole:
 54"
 Weeping from Pit Face:
 54"

 Estimated Seasonal High Ground Water?
 33"
 33"
 33"

<u>On-Site Review</u>

Deep Hole Number <u>T.P 10</u> Date <u>1-6-2020</u> T	ime: 9 AM Weather: <u>cloudy 30s</u>
Location (identify on site plan) <u>east of gravel</u>	drive at 200 lf from entrance
Land Use vacant Slope (%) 59	<u>%</u> Surface Stones <u>&lt;1%</u>
Vegetation oaks and maples	
Landform <u>outwash plain</u>	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> fe	et Drainage way <u>&gt;25</u> feet
Possible Wet Areafe	et Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> fe	et Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-16"	А	SL	10yr3/3	-	
16-35"	В	LS	10yr5/6		
35"-84"	С	SL	2.5y5/2	mottles@ 35" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >84"

 Depth to Groundwater:
 Standing Water in the Hole:
 70"
 Weeping from Pit Face:
 39"

 Estimated Seasonal High Ground Water?
 35"

Page 9

## **On-Site Review**

Deep Hole Number <u>T.P 11</u> Date	1-6-202	0_Time:	9 AM Weather: cloud	y 30s	-
Location (identify on site plan)	west of g	ravel dri	ve at 200 lf from entrance		-
Land Use vacant Slope	: (%)	5%	Surface Stones<1%		
Vegetation oaks and maple	s				
Landform <u>outwash plain</u>					
Position on Landscape (see septio	plan) _				
Distances from:					
Open Water Body	200+	feet	Drainage way	>25	feet
Possible Wet Area	50+	feet	Property Line	>10	feet
Drinking Water Well	100 +	feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-7"	А	SL	10yr3/3	-	
7-25"	В	LS	10yr5/6		
25"-80"	С	SL	2.5y5/2	mottles@ 38" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >80"

 Depth to Groundwater:
 Standing Water in the Hole:
 78"
 Weeping from Pit Face:
 38"

 Estimated Seasonal High Ground Water?
 38"

## **On-Site Review**

Deep Hole Number <u>T.P 13</u> Date <u>1-6-2020</u> Time:	10 AM Weather: <u>cloudy 30s</u>	
Location (identify on site plan) east of gravel drive	e at 200 lf from entrance	
Land Use vacant Slope (%) 5%	_ Surface Stones1%	
Vegetation oaks and maples		
Landform outwash plain		
Position on Landscape (see septic plan)		
Distances from:		
Open Water Body <u>200+</u> feet	Drainage way>25	feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u>	feet
Drinking Water Well <u>100+</u> feet	OtherN/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-12"	А	SL	10yr3/3	-	
12-26"	В	LS	10yr5/6		
26"-80"	С	SL	2.5y5/2	mottles@ 26" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >80"

 Depth to Groundwater:
 Standing Water in the Hole:
 70"
 Weeping from Pit Face:
 26"

 Estimated Seasonal High Ground Water?
 26"

<u>On-Site Review</u>

Deep Hole Number <u>T.P 20</u> Date <u>1-6-2020</u> Time: <u>11</u>	AM Weather: <u>cloudy 30s</u>	
Location (identify on site plan) <u>south of onsite U pole</u>		
Land Use <u>vacant</u> Slope (%) <u>5%</u> S	urface Stones <1%	
Vegetation oaks and maples		
Landform outwash plain		
Position on Landscape (see septic plan)		
Distances from:		
Open Water Body <u>200+</u> feet	Drainage way>25	feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u>	feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u>	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-7"	А	SL	10yr3/3	-	
7-22"	В	LS	10yr5/6		
22"-84"	С	SL	2.5y5/2	mottles@ 31" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >84"

 Depth to Groundwater:
 Standing Water in the Hole:
 52"
 Weeping from Pit Face:
 31"

 Estimated Seasonal High Ground Water?
 31"

<u>On-Site Review</u>

Deep Hole Number <u>T.P 21</u> Date <u>1-6-2020</u> Time:	<u>12 PM</u> Weather: <u>cloudy 30s</u>
Location (identify on site plan) south of onsite U pe	ole
Land Use vacant Slope (%) 5%	_Surface Stones
Vegetation oaks and maples	
Landform outwash plain	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-6"	А	SL	10yr3/3	-	
6-22"	В	LS	10yr5/6		
22"-84"	С	SL	2.5y5/2	mottles@ 33" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >84"

 Depth to Groundwater:
 Standing Water in the Hole:
 52"
 Weeping from Pit Face:
 41"

 Estimated Seasonal High Ground Water?
 80"
 80"
 80"

Page 13

### **On-Site Review**

Deep Hole Number <u>T.P 22</u> Date	e <u>1-8-202</u>	0 Time:	9 AM Weather:	rainy	30s	
Location (identify on site plan)	south of c	onsite U p	ole	_		
Land Use vacant Slope	: (%)	5%	Surface Stones	<1%		
Vegetation oaks and maple	s					
Landform <u>outwash plain</u>						
Position on Landscape (see septic	plan)					
Distances from:						
Open Water Body	200+	feet	Drainag	e way _	>25	feet
Possible Wet Area	50+	feet	Property	Line	>10	feet
Drinking Water Well	100 +	feet	Other		N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-9"	А	SL	10yr3/3	-	
9-24"	В	LS	10yr5/6		
24"-72"	С	SL	2.5y5/2	mottles@ 26" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >72"

 Depth to Groundwater:
 Standing Water in the Hole:
 60"
 Weeping from Pit Face:
 26"

 Estimated Seasonal High Ground Water?
 26"

<u>On-Site Review</u>

Deep Hole Number <u>T.P 24</u> Date <u>1-8-2020</u> Time:	10 AM Weather: <u>rainy 30s</u>	
Location (identify on site plan) <u>south of onsite U po</u>	le	
Land Use vacant Slope (%) 5%	Surface Stones <1%	
Vegetation oaks and maples		
Landform <u>outwash plain</u>		
Position on Landscape (see septic plan)		
Distances from:		
Open Water Body <u>200+</u> feet	Drainage way25	feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u>	feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u>	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr3/3	-	
10-28"	В	LS	10yr5/6	mottles@ 22" 7.5y6/4	
28"-88"	С	SL	2.5y5/2		firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >88"

 Depth to Groundwater:
 Standing Water in the Hole:
 63"
 Weeping from Pit Face:
 22"

 Estimated Seasonal High Ground Water?
 22"

## **On-Site Review**

Deep Hole Number <u>T.P 25</u> Date <u>1-8-2020</u> Time:	10:30 AM Weather: rainy 30s	
Location (identify on site plan) <u>south of onsite Up</u>	ole	
Land Use <u>vacant</u> Slope (%) <u>5%</u>	_Surface Stones	
Vegetation oaks and maples		
Landform <u>outwash plain</u>		
Position on Landscape (see septic plan)		
Distances from:		
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet	
Possible Wet Areafeet	Property Line <u>&gt;10</u> feet	
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet	

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr3/3	-	
10-25"	В	LS	10yr5/6	mottles@ 25" 7.5y6/4	
25"-98"	С	SL	2.5y5/2		firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >98"

 Depth to Groundwater:
 Standing Water in the Hole:
 96"
 Weeping from Pit Face:
 32"

 Estimated Seasonal High Ground Water?
 32"

Page 16

### **On-Site Review**

Deep Hole Number <u>T.P 26</u> Date <u>1-8-20</u>	020 Time:	11 AM Weather:rainy	30s	
Location (identify on site plan) <u>south o</u>	of onsite U p	oole		
Land Use vacant Slope (%)	5%	Surface Stones<1%		
Vegetation oaks and maples				
Landform <u>outwash plain</u>				
Position on Landscape (see septic plan)				
Distances from:				
Open Water Body200+	feet	Drainage way	>25	feet
Possible Wet Area50+	feet	Property Line	>10	feet
Drinking Water Well100+	feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr3/3	-	
10-24"	В	LS	10yr5/6	mottles@ 24" 7.5y6/4	
24"-82"	С	SL	2.5y5/2		firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >82"

 Depth to Groundwater:
 Standing Water in the Hole:
 73"
 Weeping from Pit Face:
 24"

 Estimated Seasonal High Ground Water?
 24"

## **On-Site Review**

Deep Hole Number <u>T.P 1DW</u> D	ate <u>2-19-</u>	2020	_ Time: <u>9 AM</u> Weather:	sunny 30s	
Location (identify on site plan)	120' sout	h of onsite	e U pole		
Land Use vacant Slope	(%)	5%	Surface Stones <1%		
Vegetation oaks and maple	s				
Landform <u>outwash plain</u>					
Position on Landscape (see septic	plan)				
Distances from:					
Open Water Body	200+	feet	Drainage way _	>25	feet
Possible Wet Area	50+	feet	Property Line	>10	feet
Drinking Water Well	100+	feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr3/3	-	
10-22"	В	LS	10yr5/6		
22"-120"	С	SL	2.5y5/2	mottles@ 25" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >120"

 Depth to Groundwater:
 Standing Water in the Hole:
 none
 Weeping from Pit Face:
 30"

 Estimated Seasonal High Ground Water?
 25"

## **On-Site Review**

Deep Hole Number <u>T.P 2DW D</u>	ate <u>2-19-</u>	2020	Time: Time: Weather	r: <u>sunny 30s</u>	
Location (identify on site plan)	120' sout	h of onsit	e U pole		
Land Use vacant Slope	(%)	5%	_Surface Stones <1%		
Vegetation oaks and maple	S				
Landform outwash plain					
Position on Landscape (see septic	plan)				
Distances from:					
Open Water Body	200+	feet	Drainage way _	>25	feet
Possible Wet Area	50+	feet	Property Line _	>10	feet
Drinking Water Well	100 +	feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-8"	А	SL	10yr3/3	-	
8-19"	В	LS	10yr5/6		
19"-120"	С	SL	2.5y5/2	mottles@ 37" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >120"

 Depth to Groundwater:
 Standing Water in the Hole:
 none
 Weeping from Pit Face: 41"

 Estimated Seasonal High Ground Water?
 37"

## **On-Site Review**

Deep Hole Number <u>T.P 3NDW</u> Date <u>2-19-2020</u>	_ Time: <u>11 AM</u> Weather: <u>sunny 30s</u>
Location (identify on site plan) <u>120' south of onsite</u>	e U pole
Land Use <u>vacant</u> Slope (%) <u>5%</u>	_Surface Stones
Vegetation oaks and maples	
Landform outwash plain	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-11"	А	SL	10yr3/3	-	
11-28"	В	LS	10yr5/6		
28"-120"	С	SL	2.5y5/2	mottles@ 31" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >120"

 Depth to Groundwater:
 Standing Water in the Hole:
 114"
 Weeping from Pit Face:
 60"

 Estimated Seasonal High Ground Water?
 31"

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA

## Determination for Seasonal High Water Table

### Method Used:

Depth to bottom of deep hole (assumed seasonal high groundwater)inches
Depth observed standing in observation holeinches
Depth weeping from side of observation holeinches
Depth to soil mottle see soil logs inches

Index Well Number Reading Date_____ Index Well Level
Adjustment Factor_____ Adjusted Groundwater Level _____

### Depth of Naturally Occurring Pervious Material

Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system? _____ yes _____

If not, what is the depth of naturally occurring pervious material?_____

### Certification

I certify that on <u>June 1999</u> I have passed the soil evaluator examination approved by the Department of Environmental Protection and that the above analysis was performed by me consistent with the required training, expertise, and experience described in 310 CMR 15.017.

Signature Anthony Esposito Date 2/21/2020

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test			
Date: 12-13-2019	Time: 9:53 AM, 10:17 AM		

T.P. 2	T.P. 3
24+18"	33+18"
9:53	10:17
10:08	10:32
10:08	10:32
10:41	10:57
11:20	11:38
39	41
13 min/in	14 min/in
	24+18" 9:53 10:08 10:08 10:41 11:20 39

Site Passed X Site Failed

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

	*Percolation Test
Date: 12-13-2019	Time: 10:32 AM, 11:47 AM

Observation Hole #	T.P. 4	T.P. 5		
Depth of Perc.	30+18"	24+18"		
Start Pre-Soak	10:32	11:47		
End Pre-Soak	10:47	12:08		
Time at 12"	10:47	12:08		
Time at 9"	11:45	12:45		
Time at 6"	1:09	1:34		
Time (9" - 6")	84	49		
Rate (Minutes/Inch)	28 min/in	17 min/in		

Site Passed X Site Failed

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

	*Percolation Test
Date: 1-6-2020	Time: 11:11 AM, 12:33 PM

T.P. 13	T.P. 20		
24+18"	24+18"		
11:11	12:33		
11:26	12:48		
11:26	12:48		
11:32	1:56		
1:01	3:45		
89	109		
30 min/in	37 min/in		
	24+18" 11:11 11:26 11:26 11:32 1:01 89		

Site Passed X Site Failed

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Per	colation Test
Date: 2-19-2020	Time: 10:02 AM, 9:16 AM

T.P. 1DW	T.P. 2DW	
26+18"	36+18"	
10:02	9:16	
10:17	9:31	
10:17	9:31	
11:31	11:00	
1:12	1:40	
101	160	
34 min/in	54 min/in	
	26+18" 10:02 10:17 10:17 11:31 1:12 101	

Site Passed X Site Failed

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

# ***Percolation Test**

Date: 2-19-2020

Time: 10:02 AM, 9:16 AM

Observation Hole #	T.P. 3NDW	
Depth of Perc.	25+18"	
Start Pre-Soak	11:12	
End Pre-Soak	11:27	
Time at 12"	11:27	
Time at 9"	12:48	
Time at 6"	3:48	
Time (9" - 6")	120	
Rate (Minutes/Inch)	60 min/in	

Site Passed X Site Failed

## Commonwealth of Massachusetts Scituate, Massachusetts <u>Soil Suitability Assessment for On-Site Septic System</u>

Performed By: Anthony Esposito, South Shore Survey Consultants Inc.

Witnessed By: Peter Falabella,, Scituate Board of Health

Location, Address, or Lot #	Owner's Name, Address, and Telephone #		
270 Old Oslear Developt Dd	US Bank National Assc. Trust		
279 Old Oaken Bucket Rd. Scituate, MA	s/o Lovendale LLC 107 East St.		
Assessors # 41-1-3	Duxbury, MA 02332		
	Dunouty, MITO2552		
New Construction X Repair			
Office Review			
Published Soil Survey Available: No	Yes 🗵		
Year Published 2019 Publication Scale	<u>1:12,000</u> Soil Map Unit <u>427B</u>		
Drainage Class <u>B</u> Soil Limitations	High Water Table		
Surficial Geologic Report Available: No	Yes 🔀		
Year Published 2019 Publication Scale 1:12,00	0		
Geologic Material (Map Unit) eiolian deposis	sts		
Landform <u>outwash plain</u>			
Flood Insurance Rate Map:			
riood insurance Rate Map.			
Above 500 year flood boundary No $\Box$	Yes 🔀		
Within 500 year flood boundary No	Yes 🛛		
Within 100 year flood boundary No	Yes 🗆		
Wetland Area:			
National Wetland Inventory Map (map unit)_	N/A		
Wetlands Conservancy Program Map (map u	nit) N/A		
Current Water Resource Conditions (USGS):	Month August 2020		
_			
Range: Above Normal	Normal 🛛 Below Normal 🗵		
Other References Reviewed: None			

Page 2

## **On-Site Review**

Deep Hole Number <u>T.P 1-2</u> Date	e <u>8-26-2</u>	0_Time:_	9 AM Weather:	y 80s	-
Location (identify on site plan)	rear yard		_		
Land Use vacant Slope	(%)	5%	_Surface Stones		
Vegetation oaks and maples	5				
Landform <u>outwash plain</u>					
Position on Landscape (see septic	plan)				
Distances from:					
Open Water Body	200+	feet	Drainage way	>25	feet
Possible Wet Area	50+	feet	Property Line	>10	feet
Drinking Water Well	100+	feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

		Soil			Other
Depth from Surface	Soil	Texture	Soil Color	Soil	(Structure, Stones,
(Inches)	Horizon	(U.S.D.A.)	(Munsell)	Mottling	Boulders, Consistency,
					% Gravel)
0-8"	А	SL	10yr4/4	-	
				<i>u</i> 1 O	
8-27"	В	LS	10yr5/4	mottles@ 36"	
0-27	Ъ	LS	10915/4	7.5y6/4	
					firm, 40% stones 50%
27"-120"	С	SL	2.5y6/3		gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >120"

 Depth to Groundwater:
 Standing Water in the Hole:
 none
 Weeping from Pit Face:
 none

 Estimated Seasonal High Ground Water?
 36"
 36"
 36"
 36"

## **On-Site Review**

Deep Hole Number T.P 2-2 Date 8-26-20 Time:	9:20 AM Weather: sunny 80s
Location (identify on site plan) rear yard	_
Land Use vacant Slope (%) 5%	_Surface Stones<1%
Vegetation oaks and maples	
Landform outwash plain	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-22"	А	SL	10yr4/4	-	
22-41"	В	LS	10yr5/4	mottles@ 41" 7.5y6/4	
27"-142"	С	SL	2.5y6/3		firm, 40% stones 50% gravel

 Parent Material (geologic) _______eiolian deposists _______Depth to Bedrock ________>142"

 Depth to Groundwater:
 Standing Water in the Hole: ________Weeping from Pit Face: 131"

 Estimated Seasonal High Ground Water? _______41"

## **On-Site Review**

9 :30AM Weather: sunny 80s
_
_Surface Stones
Drainage way <u>&gt;25</u> feet
Property Line <u>&gt;10</u> feet
Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-8"	А	SL	10yr4/4	-	
8-23"	В	LS	10yr5/4	mottles@ 23" 7.5y6/4	
23"-122"	С	SL	2.5y6/3		firm, 40% stones 50% gravel

## **On-Site Review**

Deep Hole Number T.P 4-2 Date 8-26-20 Time:	9 :40AM Weather: sunny 80s
Location (identify on site plan) rear yard	_
Land Use vacant Slope (%) 5%	_Surface Stones<1%
Vegetation oaks and maples	
Landform outwash plain	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-8"	А	SL	10yr4/4	-	
8-24"	В	LS	10yr5/4		
24"-133"	С	SL	2.5y6/3	mottles@ 35" 7.5y6/4	firm, 40% stones 50% gravel

Page 6

## **On-Site Review**

Deep Hole Number <u>T.P 5-2</u> Date <u>8-26-20</u> T	ime: <u>9:50AM</u> Weather: <u>sunny 80s</u>
Location (identify on site plan) rear yard	
Land Use vacant Slope (%) 59	% Surface Stones
Vegetation oaks and maples	
Landform <u>outwash plain</u>	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> fe	et Drainage way <u>&gt;25</u> feet
Possible Wet Areafe	et Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> fe	et Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr4/4	-	
10-35"	В	LS	10yr5/4		
35"-96"	С	SL	2.5y6/3	mottles@ 35" 7.5y6/4	loose, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >96"

 Depth to Groundwater:
 Standing Water in the Hole:
 96"
 Weeping from Pit Face:
 96"

 Estimated Seasonal High Ground Water?
 35"
 35"
 35"

Page 7

## **On-Site Review**

Deep Hole Number <u>T.P 6-2</u> Date <u>8-26</u>	<u>5-20</u> Time:	10AM Weather: <u>sunny</u>	7 80s	_
Location (identify on site plan) rear ya	urd	_		
Land Use vacant Slope (%)	5%	_Surface Stones<1%		
Vegetation oaks and maples				
Landform <u>outwash plain</u>				
Position on Landscape (see septic plan)				
Distances from:				
Open Water Body 200-	+ feet	Drainage way	>25	feet
Possible Wet Area50+	feet	Property Line	>10	feet
Drinking Water Well100-	+ <u>feet</u>	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr4/4	-	
10-26"	В	LS	10yr5/4		
26"-160"	С	SL	2.5y6/3	mottles@ 44" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >160"

 Depth to Groundwater:
 Standing Water in the Hole:
 152"
 Weeping from Pit Face:
 151"

 Estimated Seasonal High Ground Water?
 44"

Page 8

## **On-Site Review**

Deep Hole Number <u>T.P 7</u> Date	8-26-20		10:15AM Weather:su	nny 80s	-
Location (identify on site plan)	rear yard		_		
Land Use vacant Slope	(%)	5%	_Surface Stones		
Vegetation oaks and maple	s				
Landform <u>outwash plain</u>					
Position on Landscape (see septic	plan)				
Distances from:					
Open Water Body	200+	feet	Drainage way _	>25	feet
Possible Wet Area	50+	feet	Property Line	>10	feet
Drinking Water Well	100 +	feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-7"	А	SL	10yr4/4	-	
7-23"	В	LS	10yr5/4		
23"-111"	С	SL	2.5y6/3	mottles@ 25" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >111"

 Depth to Groundwater:
 Standing Water in the Hole:
 none
 Weeping from Pit Face:
 none

 Estimated Seasonal High Ground Water?
 25"
 25"
 25"

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA

## **Determination for Seasonal High Water Table**

### Method Used:

Depth to bottom of deep hole (assumed seasonal high groundwater)inches
Depth observed standing in observation holeinches
Depth weeping from side of observation holeinches
Depth to soil mottle see soil logs inches

Index Well Number Reading Date_____ Index Well Level
Adjustment Factor_____ Adjusted Groundwater Level _____

### Depth of Naturally Occurring Pervious Material

Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system? yes

If not, what is the depth of naturally occurring pervious material?_____

### Certification

I certify that on <u>June 1999</u> I have passed the soil evaluator examination approved by the Department of Environmental Protection and that the above analysis was performed by me consistent with the required training, expertise, and experience described in 310 CMR 15.017.

Signature Anthony Esposito Date 8/26/2020

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test						
Date: 8/26/2020	Time: 9:31 AM, 10:02AM					

Observation Hole #	T.P. 1	T.P. 2
Depth of Perc.	42+18"	41+18"
Start Pre-Soak	9:31	10:02
End Pre-Soak	9:46	10:17
Time at 12"	9:46	10:17
Time at 9"	10:02	10:39
Time at 6"	10:23	11:11
Time (9" - 6")	21	32
Rate (Minutes/Inch)	7 min/in	11 min/in

Site Passed X Site Failed

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test		
Date: 8/26/2020	Time: 10:22 AM	

Observation Hole #	T.P. 3	T.P. 4
Depth of Perc.	30+18"	no
Start Pre-Soak	10:22	
End Pre-Soak	10:37	perc
Time at 12"	10:37	
Time at 9"	10:50	test
Time at 6"	11:05	
Time (9" - 6")	15	
Rate (Minutes/Inch)	5 min/in	

Site Passed X Site Failed

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test	
Date: 8-26-2020	Time: 11:11 AM, 12:33 PM

T.P. 5	T.P. 6
39+18"	22+18"
11:46	12:16
12:01	12:31
12:01	12:31
12:36	12:43
1:03	1:03
27	109
9 min/in	7 min/in
	39+18"         11:46         12:01         12:01         12:36         1:03         27

Site Passed X Site Failed

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test	
Date: 8-26-2020	Time: 11:43 AM

Observation Hole #	T.P. 7	
Depth of Perc.	23+18"	
Start Pre-Soak	11:43	
End Pre-Soak	1:58	
Time at 12"	1:58	
Time at 9"	2:10	
Time at 6"	2:23	
Time (9" - 6")	13	
Rate (Minutes/Inch)	5 min/in	

Site Passed X Site Failed

## Commonwealth of Massachusetts Scituate, Massachusetts Soil Suitability Assessment for On-Site Septic System

Performed By: Anthony Esposito, South Shore Survey Consultants Inc.

Witnessed By: Peter Falabella,, Scituate Board of Health

Location, Address, or Lot #	Owner's Name, Address, and Telephone #		
	US Bank National Assc. Trust		
279 Old Oaken Bucket Rd.	s/o Lovendale LLC		
Scituate, MA	107 East St.		
Assessors # 41-1-3	Duxbury, MA 02332		
New Construction X Repair			
Office Review			
Published Soil Survey Available: No 🗌 Yes 🔀			
Year Published 2019 Publication Scale 1:12,000 Soil Map Unit 427B			
Drainage Class B Soil Limitations High Water Table			
Surficial Geologic Report Available: No	Yes 🔀		
Year Published 2019 Publication Scale 1:12,00	0		
Geologic Material (Map Unit) eiolian deposi	sts		
Landform <u>outwash plain</u>			
Flood Insurance Rate Map:			
Above 500 year flood boundary No	Yes 🔀		
Within 500 year flood boundary No	Yes 🛛		
Within 100 year flood boundary No	Yes 🛛		
Wetland Area:			
National Wetland Inventory Map (map unit)	N/A		
Wetlands Conservancy Program Map (map u	nit)N/A		
Current Water Resource Conditions (USGS):	Month February 2021		
Range: Above Normal	Normal 🗵 Below Normal 🛛		
Other References Reviewed: None			

Page 2

## **On-Site Review**

Deep Hole Number <u>T.P 1-3</u> Date	<u>2-1-21</u> Ti	me: <u>9 AM</u> Weather:	snow 20s	
Location (identify on site plan) u	pland island			
Land Use vacant Slope (	<u>3%</u>	Surface Stones	<1%	
Vegetation oaks and maples				
Landform <u>outwash plain</u>				
Position on Landscape (see septic j	plan)			
Distances from:				
Open Water Body	<u>200+</u> fee	t Drainag	ge way <u>&gt;25</u>	feet
Possible Wet Area	<u>50+</u> fee	t Propert	y Line <u>&gt;10</u>	feet
Drinking Water Well	100+ fee	t Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-12"	А	SL	10yr3/2	-	
12-36"	В	LS	10yr5/6	mottles@ 36" 7.5y6/4	
36"-120"	С	SL	2.5y6/3		Loose and wet, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >120"

 Depth to Groundwater:
 Standing Water in the Hole:
 108"
 Weeping from Pit Face:
 36"

 Estimated Seasonal High Ground Water?
 36"

Deep Hole Number T.P 2-3 Date 2-1-2021	Time: <u>9:20 AM</u> Weather: <u>snow 20s</u>
Location (identify on site plan) upland island	_
Land Use vacant Slope (%) 3%	Surface Stones<1%
Vegetation oaks and maples	
Landform outwash plain	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr3/2	-	
10-26"	В	LS	10yr5/6		
26"-40"	C1	GS	2.5y4/3	mottles@ 36" 7.5y6/4	firm, 40% stones 50% gravel
40-120"	C2	SL	2.5y3/2		

Deep H	ole Number <u>T.P 3-3</u> Date	e <u>2-1-202</u>	21	Time:	9:40 AM Weath	er: <u>snow 20s</u>	
Location	n (identify on site plan) <u></u>	upland isl	and		_		
Land Us	sevacant_Slope	(%)	3%	Surface	Stones <u>&lt;1%</u>		
Vegetat	ion oaks and maples					_	
Landfor	moutwash plain						
Position	on Landscape (see septic	plan)					
Distance	es from:						
	Open Water Body	200+	feet		Drainage way	>25	feet
	Possible Wet Area	50+	feet		Property Line	>10	feet
	Drinking Water Well	100+	feet		Other	N/A	feet

### **On-Site Review**

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-15"	А	SL	10yr3/2	-	
15-36"	В	LS	10yr5/6		
36"-120"	C1	LS	2.5y4/3	mottles@ 36" 7.5y6/4	loose, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >120"

 Depth to Groundwater:
 Standing Water in the Hole:
 90"
 Weeping from Pit Face:
 81"

 Estimated Seasonal High Ground Water?
 36"
 36"
 36"

Deep Hole Number <u>T.P 4-3</u> Date <u>2-1-21</u> Time:	9 :40AM Weather: sunny 30s	
Location (identify on site plan) upland island		
Land Use <u>vacant</u> Slope (%) <u>3%</u>	_Surface Stones	
Vegetation oaks and maples		
Landform outwash plain		
Position on Landscape (see septic plan)		
Distances from:		
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> fee	et
Possible Wet Areafeet	Property Line <u>&gt;10</u> fee	et
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> fee	et

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-18"	А	SL	10yr3/2	-	
18-24"	В	LS	10yr5/4		
24"-108"	С	SL	2.5y6/3	mottles@ 22" 7.5y6/4	loose, 40% stones 50% gravel

 Parent Material (geologic) _______eiolian deposists _______Depth to Bedrock _________
 >108"

 Depth to Groundwater:
 Standing Water in the Hole: _______
 94" Weeping from Pit Face: 24"

 Estimated Seasonal High Ground Water? ______
 22" _______

Page 6

## **On-Site Review**

Deep Hole Number <u>T.P 5-3</u> Date <u>2-1-21</u>	_ Time: 7 :40A	M Weather: <u>sno</u>	w 20s	
Location (identify on site plan) <u>upland isla</u>	and			
Land Use vacant Slope (%)	<u>3%</u> Surface	e Stones <u>&lt;1%</u>		_
Vegetation oaks and maples			_	
Landform outwash plain			_	
Position on Landscape (see septic plan)	_			
Distances from:				
Open Water Body 200+	feet	Drainage way	>25	feet
Possible Wet Area50+	feet	Property Line	>10	feet
Drinking Water Well <u>100+</u>	feet	Other	N/A	feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-10"	А	SL	10yr3/2	-	
10-24"	В	LS	10yr5/4		
24"-112"	С	SL	2.5y6/3	mottles@ 24" 7.5y6/4	loose 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >108"

 Depth to Groundwater:
 Standing Water in the Hole:
 100"
 Weeping from Pit Face:
 24"

 Estimated Seasonal High Ground Water?
 22"

Page 7

## **On-Site Review**

Deep Hole Number <u>T.P 6-3</u> Date	<u>2-1-21</u> Time:	10AM Weather: snow	20s	
Location (identify on site plan) up	land island			
Land Use vacant Slope (%	<u>)</u> 3%	_Surface Stones <1%		
Vegetation oaks and maples			_	
Landform outwash plain			_	
Position on Landscape (see septic pl	an)			
Distances from:				
Open Water Body	<u>200+</u> feet	Drainage way	>25feet	
Possible Wet Area	<u>50+</u> feet	Property Line	>10feet	
Drinking Water Well	100+ feet	Other	N/A feet	

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-9"	А	SL	10yr4/4	-	
9-18"	В	LS	10yr5/4		
18"-110"	С	SL	2.5y6/3	mottles@ 18" 7.5y6/4	firm, 40% stones 50% gravel

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >110"

 Depth to Groundwater:
 Standing Water in the Hole:
 70"
 Weeping from Pit Face:
 104"

 Estimated Seasonal High Ground Water?
 18"

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA

## **Determination for Seasonal High Water Table**

#### Method Used:

Depth to bottom of deep hole (assumed seasonal high groundwater)inches
Depth observed standing in observation holeinches
Depth weeping from side of observation holeinches
Depth to soil mottle see soil logs inches

Index Well Number Reading Date_____ Index Well Level
Adjustment Factor_____ Adjusted Groundwater Level _____

#### Depth of Naturally Occurring Pervious Material

Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system? yes

If not, what is the depth of naturally occurring pervious material?_____

#### Certification

I certify that on <u>June 1999</u> I have passed the soil evaluator examination approved by the Department of Environmental Protection and that the above analysis was performed by me consistent with the required training, expertise, and experience described in 310 CMR 15.017.

Signature Anthony Esposito Date 2/1/2021

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

## Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test			
Date: 2/1/2021	Time: 9:31 AM, 10:02AM		

T.P. 1-3	T.P. 2-3
24+18"	36+18"
10:28	10:02
10:43	10:17
10:43	10:17
11:34	10:39
12:50	11:11
76	32
26 min/in	11 min/in
-	24+18" 10:28 10:43 10:43 11:34 12:50 76

Site Passed X Site Failed

Performed By: <u>Anthony Esposito, SE688, P.E.</u> Witnessed By <u>Peter Falabella, Scituate Board of Health</u> Comments:

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

## Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test				
Date: 8/26/2020	Time: 10:22 AM			

Observation Hole #	T.P. 3-3	T.P. 4-3
Depth of Perc.	30+18"	no
Start Pre-Soak	10:22	
End Pre-Soak	10:37	perc
Time at 12"	10:37	
Time at 9"	10:50	test
Time at 6"	11:05	
Time (9" - 6")	15	
Rate (Minutes/Inch)	5 min/in	

Site Passed X Site Failed

Performed By: <u>Anthony Esposito, SE688, P.E.</u> Witnessed By <u>Peter Falabella, Scituate Board of Health</u> Comments:

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

## Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test				
Date: 8-26-2020	Time: 11:11 AM, 12:33 PM			

Observation Hole #	T.P. 5-3	T.P. 6-3	
Depth of Perc.	39+18"	22+18"	
Start Pre-Soak	11:46	12:16	
End Pre-Soak	12:01	12:31	
Time at 12"	12:01	12:31	
Time at 9"	12:36	12:43	
Time at 6"	1:03	1:03	
Time (9" - 6")	27	109	
Rate (Minutes/Inch)	9 min/in	7 min/in	

Site Passed X Site Failed

Performed By: <u>Anthony Esposito, SE688, P.E.</u> Witnessed By <u>Peter Falabella, Scituate Board of Health</u> Comments:

## Commonwealth of Massachusetts Scituate, Massachusetts Soil Suitability Assessment for On-Site Septic System

Performed By: Anthony Esposito, South Shore Survey Consultants Inc.

Witnessed By: Joshua Green Merrill Associates

T .! A 11 T . //					
Location, Address, or Lot #	Owner's Name, Address, and Telephone #				
279 Old Oaken Bucket Rd.	US Bank National Assc. Trust				
	s/o Lovendale LLC 107 East St.				
Scituate, MA Assessors # 41-1-3	Duxbury, MA 02332				
ASSESSOIS # 41-1-5	Duxbury, WA 02552				
New Construction X Repair					
Office Review					
Published Soil Survey Available: No	Yes 🗵				
Year Published 2019 Publication Scale	<u>= 1:12,000</u> Soil Map Unit <u>427B</u>				
Drainage Class <u>B</u> Soil Limitations	High Water Table				
Surficial Geologic Report Available: No	Yes 🗵				
Year Published 2019 Publication Scale 1:12,00	0				
Geologic Material (Map Unit) eiolian deposists					
Landform outwash plain					
Flood Insurance Rate Map:					
Above 500 year flood boundary No $\Box$	Yes 🗵				
Within 500 year flood boundary No	Yes 🗆				
Within 100 year flood boundary No	Yes 🗆				
Wetland Area:					
National Wetland Inventory Map (map unit) N/A					
Wetlands Conservancy Program Map (map unit)   N/A					
Current Water Resource Conditions (USGS):	MonthOctober 2022				
Range: Above Normal	Normal 🛛 Below Normal 🛛				
Other References Reviewed: None					

## **On-Site Review**

Deep Hole Number <u>T.P unit 4</u> Date <u>10-6-22</u>	_Time: <u>9 AM</u> Weather: <u>sunny 60s</u>
Location (identify on site plan) <u>dwelling 4</u>	
Land Use vacant Slope (%) 3%	_Surface Stones
Vegetation oaks and maples	
Landform <u>outwash plain</u>	
Position on Landscape (see septic plan)	
Distances from:	
Open Water Body <u>200+</u> feet	Drainage way <u>&gt;25</u> feet
Possible Wet Area <u>50+</u> feet	Property Line <u>&gt;10</u> feet
Drinking Water Well <u>100+</u> feet	Other <u>N/A</u> feet

# **DEEP OBSERVATION HOLE LOG**

Depth from Surface (Inches)	Soil Horizon	Soil Texture (U.S.D.A.)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-9"	А	SL	10yr3/2	-	
9-35"	В	SL	10yr5/6		
35"-90"	С	SL	2.5y6/3	mottles@ 48" 7.5y5/8	firm

 Parent Material (geologic)
 eiolian deposists
 Depth to Bedrock
 >90"

 Depth to Groundwater:
 Standing Water in the Hole:
 none
 Weeping from Pit Face:
 none

 Estimated Seasonal High Ground Water?
 48"
 48"
 48"

Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA

## **Determination for Seasonal High Water Table**

#### Method Used:

	Depth to bottom of deep hole (assumed seasonal high groundwater)inches
	Depth observed standing in observation holeinches
	Depth weeping from side of observation holeinches
Х	Depth to soil mottle <u>48</u> inches
Index Well Num Adjustment Fact	ber Reading Date Index Well Level or Adjusted Groundwater Level

#### Depth of Naturally Occurring Pervious Material

Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system? yes

If not, what is the depth of naturally occurring pervious material?_____

#### Certification

I certify that on _June 1999 _____ I have passed the soil evaluator examination approved by the Department of Environmental Protection and that the above analysis was performed by me consistent with the required training, expertise, and experience described in 310 CMR 15.017.

Signature Anthony Esposito Date 10/6/2022

#### Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Percolation Test					
Date: 2/1/2021	Time: 9:31 AM, 10:02AM				

Observation Hole #	T.P. 1-3	T.P. 2-3
Depth of Perc.	24+18"	36+18"
Start Pre-Soak	10:28	10:02
End Pre-Soak	10:43	10:17
Time at 12"	10:43	10:17
Time at 9"	11:34	10:39
Time at 6"	12:50	11:11
Time (9" - 6")	76	32
Rate (Minutes/Inch)	26 min/in	11 min/in

Site Passed X Site Failed

Performed By: <u>Anthony Esposito, SE688, P.E.</u>

Witnessed By <u>Peter Falabella, Scituate Board of Health</u> Comments:

#### Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*Percolat	tion Test
Date: 8/26/2020	Time: 10:22 AM

Observation Hole #	T.P. 3-3	T.P. 4-3
Depth of Perc.	30+18"	no
Start Pre-Soak	10:22	
End Pre-Soak	10:37	perc
Time at 12"	10:37	
Time at 9"	10:50	test
Time at 6"	11:05	
Time (9" - 6")	15	
Rate (Minutes/Inch)	5 min/in	

Site Passed X Site Failed

Performed By: <u>Anthony Esposito, SE688, P.E.</u>

Witnessed By_Peter Falabella, Scituate Board of Health Comments:

#### Location, Address, or Lot # 279 Old Oaken Bucket Rd. Scituate, MA.

### Commonwealth of Massachusetts Scituate, Massachusetts

*]	Percolation Test
Date: 8-26-2020	Time: 11:11 AM, 12:33 PM

T.P. 5-3	T.P. 6-3
39+18"	22+18"
11:46	12:16
12:01	12:31
12:01	12:31
12:36	12:43
1:03	1:03
27	109
9 min/in	7 min/in
	39+18"         11:46         12:01         12:36         1:03         27

Site Passed X Site Failed

Performed By: <u>Anthony Esposito, SE688, P.E.</u>

Witnessed By_Peter Falabella, Scituate Board of Health Comments:



City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	Owner Name					
	#279-281 Old Oaken Bucket Road		41-1-2-D			
	Street Address	C.25.	Map/Lot #			
	Scituate	MA	02066			
	City	State	Zip Code			
3.	Site Information					
	(Check one) 🛛 New Construction 🗌 U	lpgrade				
	Soil Survey nesoil.com	421B	Canton	fine sandy loam, 0-8% slopes, stor		
	Source	Soil Map Unit	Soil Series			
	Morraines, hills, ridges Shallow to restrictive laye		, shallow to groundwater			
	Landform	Soil Limitations				
	Coarse-loamy over sandy melt-out till derived from	aneiss granite and/or schist				
	Soil Parent material	r grielos, granne, ana/er bernet				
		Stone, DiGiacomo-Cohen	Thin till			
	Year Published/Se		Map Unit			
	Non-sorted, non-stratified matrix of sand, some sil	t, and little clay containing scatt	ered pebble, cobble, and boulder of	lasts		
	Description of Geologic Map Unit:					
	Flood Rate Insurance Map Within a regulat	ory floodway? 🗌 Yes 🛛	] No			
	Within a velocity zone? 🗌 Yes 🛛 No					
	Within a Mapped Wetland Area?  Yes	No If yes, I	MassGIS Wetland Data Layer:			
				Wetland Type		
		10/06/2022	Range: 🗌 Above Normal	🛛 Normal 🗌 Below Norma		
	Current Water Resource Conditions (USGS):	Month/Day/ Year				

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deen	Observatio	n Hole Numb	er: Ch.A. I	10/07	/2022	11:50		Sunny, 65F			and the second se
	2020		Hole #	Date		Time		Weather		Latitude	Longitude
1. Land	Use Wood	land			Trees/low-lyi	ng brush	Som	e boulders p	present		3-5%
I. Land	(e.g., w		ural field, vacant lot, e		Vegetation	1.000			, cobbles, st	ones, boulders, o	etc.) Slope (%)
Descriptio	on of Location	n: Re	fer to site plan "Char	nber Area	1" at north area o	f locus, near existi	ing driveway	y			
2. Soil P	Parent Materi		amy over sandy			nlaine		Deskalar			
		schis	ed from gneiss, g	ranite, a		plains		Backslop Position on		(SU, SH, BS, FS	TS Plain)
		schis			La	dioini		r osition on	Landscape	(50, 51, 55, 75	, 10, Flam)
		0.000	Water Body	>500 fee		Draina	e Way n	1/2 foot		Wetla	nds <u>~165</u> feet
3. Dista	nces from:	Oper	vvaler body	-500 100	50	Diamag	je way <u>i</u>	Ind leer		VVCtian	103 <u>-100</u> leet
			Property Line	-20 feet		Drinking Wat	er Well n	n/a feet		Ott	ner feet
			Topolity Line _								
4. Unsu	itable Mater	ials Present:	🗌 Yes 🛛 No	If Yes:	Disturbed	Soil/Fill Materia	L E	] Weathered	/Fractured	Rock Be	edrock
5. Grou	ndwater Obs	erved: 🗌 Yes	No		If yes	: Depth	to Weeping	g in Hole	_	Depth to St	anding Water in Hole
5. Grou	ndwater Obs	erved: 🗌 Yes	No No		If yes	13 TO 10	to Weeping	g in Hole	-	Depth to St	anding Water in Hole
5. Grou	ndwater Obs	erved: 🗌 Yes	No No		If yes	Soil Log			-	Depth to St	anding Water in Hole
					If yes Redoximorphic I	Soil Log	Coarse	Fragments	Soil	Soil	
5. Groui Depth (in)	ndwater Obs Soil Horizon /Layer	erved:  Yes Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphic I	Soil Log	Coarse % by		Soil Structure	Soil Consistence	anding Water in Hole Other
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Depth	Redoximorphic I	Soil Log	Coarse	Fragments Volume		Soil	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphic I Color Cnc :	Soil Log	Coarse % by	Fragments Volume	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphic I Color Cnc : Dpl:	Soil Log	Coarse % by	Fragments Volume		Soil Consistence (Moist)	
Depth (in) 0-12	Soil Horizon /Layer A	Soil Texture (USDA Loamy sand	Soil Matrix: Color- Moist (Munsell) 10YR3/2		Redoximorphic I Color Cnc : Dpl: Cnc :	Soil Log	Coarse % by	Fragments Volume	Structure	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphic I Color Cnc : Dpl: Cnc : Dpl:	Soil Log	Coarse % by	Fragments Volume	Structure	Soil Consistence (Moist)	
Depth (in) 0-12 12-44	Soil Horizon /Layer A B	Soil Texture (USDA Loamy sand Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphic I Color Cnc : Dpl: Cnc :	Soil Log	Coarse % by Gravel	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-12	Soil Horizon /Layer A	Soil Texture (USDA Loamy sand	Soil Matrix: Color- Moist (Munsell) 10YR3/2		Redoximorphic I Color Cnc : Dpl: Cnc : Dpl:	Soil Log	Coarse % by	Fragments Volume	Structure granular massive	Soil Consistence (Moist) very friable	
Depth (in) 0-12 12-44	Soil Horizon /Layer A B	Soil Texture (USDA Loamy sand Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphic I Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6	Soil Log	Coarse % by Gravel	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-12 12-44	Soil Horizon /Layer A B	Soil Texture (USDA Loamy sand Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphic I Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl:	Soil Log	Coarse % by Gravel	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-12 12-44	Soil Horizon /Layer A B	Soil Texture (USDA Loamy sand Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphic I Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc :	Soil Log	Coarse % by Gravel	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-12 12-44	Soil Horizon /Layer A B	Soil Texture (USDA Loamy sand Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphic I Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc :	Soil Log	Coarse % by Gravel	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-12 12-44	Soil Horizon /Layer A B	Soil Texture (USDA Loamy sand Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphic I Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc :	Soil Log	Coarse % by Gravel	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other

Pg. 2/4

Ê

**Commonwealth of Massachusetts** 

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## D. Determination of High Groundwater Elevation

1.	Method Used (Choose one):	Obs. Hole #Ch.A. 1	Obs. Hole #
	Depth to soil redoximorphic features	59 inches	inches
	Depth to observed standing water in observati	on hole inches	inches
	<ul> <li>Depth to adjusted seasonal high groundwater (USGS methodology)</li> </ul>	(Sh) inches	inches
	Index Well Number Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Reading Date	
	Obs. Hole/Well# Sc	Sr OWc O	Wmax OWr Sh

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
    - 🛛 Yes 🗌 No
  - b. If yes, at what depth was it observed (exclude O, A, and E Horizons)?
     Upper boundary:
     12
     Lower boundary:
     108

     c. If no, at what depth was impervious material observed?
     Upper boundary:
     12
     Lower boundary:
     108

inches

inches

Ê

**Commonwealth of Massachusetts** 

City/Town of Scituate

## Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

	10/12/2022	
Signature of Soil Evaluator	Date	
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Field Diagrams: Use this area for field diagrams:

See site plan for test hole location at proposed drainage area "Chumber Area 1"

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	The Lovendale Company, LLC						
	Owner Name		Diane de la				
	#279-281 Old Oaken Bucket Road		41-1-2-D				
	Street Address		Map/Lot #				
	Scituate	MA	02066				
	City	State	Zip Code				
B.	Site Information						
1.	(Check one) 🛛 New Construction 🗌	Upgrade					
2.	Soil Survey nesoil.com	427B	N	lewfields	fine sandy loar	m, 3-8% slopes, stony	
	Source	Soil Map Unit		oil Series	-		
	Morraines, till plains, hills	Shallow to restrictive la	Shallow to restrictive layer, shallow to groundwater				
	Landform	Soil Limitations					
	Coarse-loamy eolian deposits over sandy and si	upraglacial meltout till					
	Soil Parent material	apragiacial menoat an					
3.		, Stone, DiGiacomo-Cohen	т	hin till			
0.	Year Published			lap Unit			
	Non-sorted, non-stratified matrix of sand, some	silt, and little clay containing s	scattered pebble, cobble, and be	oulder cla	sts		
	Description of Geologic Map Unit:						
	Find Data Income Man Mithin a regu	latory floodway?  Yes	🖾 No				
4.	Flood Rate Insurance Map Within a regu	latory floodway?   Yes					
5.	Within a velocity zone?  Yes  No						
<b>J</b> .							
6.	Within a Mapped Wetland Area?	⊠ No If y	es, MassGIS Wetland Data Lay	er			
<b>.</b>					Wetland Type		
	Current Water Resource Conditions (USGS):	10/06/2022	Range: Above N	ormal	Normal	Below Normal	
7.		Month/Day/ Year	W 79R DUXBURY, MA				
7.	Other references reviewed: USG						

Ps. 14

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deen	Observation	n Hole Numb	er: Ch.A. 3-1	10/06	/2022	10:30	S	Sunny, 65F											
1.000			Hole #	Date		Time	V	Veather		Latitude	Longitude								
. Land L	Ise Woodl	and			Trees/low-l	ying brush	None				3-5%								
. Land C	(e.g., we		ural field, vacant lot, e		Vegetation					ones, boulders, e	etc.) Slope (%)								
Description	n of Location	: Wo	ooded/vegetated area	a approx.	115 feet east of	BVW, refer to site pla	an "Chambe	er Area 3" sout	h end of sys	tem									
2. Soil Pa	arent Materia		amy eolian depo		r sandy T	ill plains		Footslope	e										
		and g	ravelly supraglad	cial till		andform				(SU, SH, BS, FS	, TS, Plain)								
							Const.												
<ol><li>Distan</li></ol>	ices from:	Oper	Water Body 2	>500 fee	ŧ	Drainag	e Way _	350 feet		Wetla	nds <u>~115</u> feet								
						D.1.1.1.1.1.1.1.1.1				-									
		H	Property Line	-35 feet		Drinking Wate	er vveli <u>n</u>	/a feet		Oth	ner feet								
Unoui	table Matari	ale Procent:	Yes X No	If Yes:	Disturbe	ed Soil/Fill Material	Ē	Weathered	Fractured		edrock								
. Unsur	table materi	als Fresent.		ii ies.		Soluri III Material		, weathered	n raciureu		GIOCK								
	1000	-	-							in the second	and the second states in the								
. Groun	idwater Obse	erved: 🛛 Yes	No No		lt ye	es: 115 inches	Depth to We	eping in Hole		Depth to St	anding Water in Hole								
						Soil Log													
1							Coarse	Fragments											
Depth (in)	Soil Horizon	il Horizon Soil Texture						Soil Texture	rizon Soil Texture	Soil Texture	Soil Matrix: Color-		Redoximorphie	c Features	% by	Volume	Soil	Soil Consistence	
Depui (iii)	/Layer	(USDA	Maint (Muncall)							Consistence	Other								
		(000/1	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles &	Structure	Consistence (Moist)	Other								
		(coon	MOIST (MUNSEN)	Depth	Color	Percent		Cobbles & Stones	Structure		Other								
0-10	А	Sandy loam	10YR3/2	Depth	Cnc :	Percent			Structure		Other								
0-10	А			Depth	Cnc : Dpl:	Percent				(Moist)	Other								
		Sandy loam		Depth	Cnc: Dpl: Cnc:	Percent				(Moist)	Other								
0-10 10-28	A B		10YR3/2	Depth	Cnc : Dpl: Cnc : Dpl:				granular	(Moist) very friable	Other								
10-28	В	Sandy loam Sandy loam	10YR3/2 10YR4/4		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6			Stones	granular	(Moist) very friable friable									
		Sandy loam	10YR3/2	Depth 30	Cnc : Dpl: Cnc : Dpl:				granular massive	(Moist) very friable									
10-28	В	Sandy loam Sandy loam	10YR3/2 10YR4/4		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6			Stones	granular massive	(Moist) very friable friable									
10-28	В	Sandy loam Sandy loam	10YR3/2 10YR4/4		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl:			Stones	granular massive	(Moist) very friable friable									
10-28	В	Sandy loam Sandy loam	10YR3/2 10YR4/4		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc :			Stones	granular massive	(Moist) very friable friable									
10-28	В	Sandy loam Sandy loam	10YR3/2 10YR4/4		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Dpl:			Stones	granular massive	(Moist) very friable friable									
10-28	В	Sandy loam Sandy loam	10YR3/2 10YR4/4		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc :			Stones	granular massive	(Moist) very friable friable	Other pockets of firm silt loam								

Pg. 2/4

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## D. Determination of High Groundwater Elevation

1. Me	ethod Used (Choose one):		Obs. Hole #Ch.A. 3-	1 Obs. H	loie #	
$\boxtimes$	Depth to soil redoximorphic features		30 inches		inches	
	Depth to observed standing water in observat	tion hole	inches		inches	
	Depth to adjusted seasonal high groundwater (USGS methodology)	(Sh)	inches	4	inches	
	Index Well Number $S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$	Reading Date				
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max}	OWr	Sh

## E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
    - Yes 🗌 No
  - b. If yes, at what depth was it observed (exclude O, A, and E Horizons)?
  - c. If no, at what depth was impervious material observed?

Upper boundary:	10	Lower boundary:	132
	inches		inches
Upper boundary:		Lower boundary:	
6 19 10 19 19 19 19 19 19 19 19 19 19 19 19 19	inches		inches



City/Town of Scituate

## Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

	10/12/2022	
Signature of Soil Evaluator	Date	
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Field Diagrams: Use this area for field diagrams:

"Ch.A. 3-1" test hole was performed at proposed location for "Chamber Area 3" as shown on site plan.

Ê

**Commonwealth of Massachusetts** 

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	The Lovendale Company, LLC Owner Name							
	#279-281 Old Oaken Bucket Road		41-1-2-D	41-1-2-D				
	Street Address		Map/Lot #					
	Scituate	MA		02066				
	City	State	Zip Code					
в.	Site Information							
1.	(Check one) 🛛 New Construction 🗌 U	Jpgrade						
2.	Soil Survey nesoil.com	427B		Newfields	fine sandy loa	m, 3-8% slopes, stony		
-,	Source	Soil Map Unit		Soil Series				
	Morraines, till plains, hills	Shallow to restrictiv	e layer, shallow to groundwa	ter				
	Landform	Soil Limitations						
	Coarse-loamy eolian deposits over sandy and su	praglacial meltout till						
	Soil Parent material	praglacial mentour un						
2		Stone, DiGiacomo-Cohe	n	Thin till				
3.	Year Published/S							
	Non-sorted, non-stratified matrix of sand, some si		a scattered pebble cobble :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	asts			
	Description of Geologic Map Unit:	in, and inte only containin	ig control of possiol of possiol					
4.	Flood Rate Insurance Map Within a regula	atory floodway?	es 🖾 No					
	Within a velocity zone?  Ves  No							
5.	Within a velocity zone? Yes No							
6	Within a Mapped Wetland Area?  Yes	No No	If yes, MassGIS Wetland Dat	a Layer:				
6.	see a second provide the second s	Character Co.		a dia ma	Wetland Type	Carlot Connector		
7.	Current Water Resource Conditions (USGS):	10/06/2022	Range: 🗌 At	ove Normal	🛛 Normal	Below Normal		
		Month/Day/ Year						

PA

14

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

	Observation	1 Hole Numb	er: Ch.A. 4-1	10/06	/2022	12:20		Sunny, 65F			Section 1
			Hole #	Date	1.5.1. 10.0.0	Time	٧	Veather		Latitude	Longitude
. Land I	Use Woodl				Trees/low-ly	ing brush	None			al de trans	3-5%
. Lana	(e.g., wo	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ural field, vacant lot, e		Vegetation					ones, boulders, e	etc.) Slope (%)
)escriptio	n of Location	1: <u>Wa</u>	poded/vegetated area	approx.	10 feet NE of BV	W, refer to site pla	n "Chambe	r Area 4" north	end of syste	m	
Soil P	arent Materia		oamy eolian depo gravelly supraglad		14	Il plains		Footslop		(OLL OLL DO. 50	T0 0(-1-)
					La	ndform		Position on	Landscape	(SU, SH, BS, FS	, TS, Plain)
. Distar	ices from:	Oper	Water Body 2	500 fee	t	Drainag	e Way 🗠	-220 feet		Wetlan	nds <u>~110</u> feet
		F	Property Line	-140 fee	t	Drinking Wate	er Well n	I/a feet		Oth	ner feet
					<b>— — — —</b>						S
Unsui	table Materi	als Present:	🗌 Yes 🛛 No	If res:	Disturbed	Soil/Fill Material	L	] Weathered	Fractured	коск ЦВе	drock
1. Sec. 1.	and all all a									25.0000	and the states of the states
Groun	idwater Obse	erved: 🗌 Yes	No No		If yes	S: Depth	to Weeping	in Hole		Depth to Sta	anding Water in Hole
						Soil Log					
)epth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphic			Fragments Volume	Soil	Soil	Other
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Depth	Redoximorphic Color				Soil Structure	Soil Consistence (Moist)	Other
	/Layer	(USDA	Moist (Munsell)		1	Features	% by	Volume Cobbles &	Structure	Consistence (Moist)	Other
Depth (in) 0-14		[11] T. M. M. W. C. M.			Color	Features	% by	Volume Cobbles &		Consistence (Moist)	Other
0-14	/Layer A	(USDA Sandy loam	Moist (Munsell) 10YR2/1		Color Cnc :	Features	% by	Volume Cobbles &	Structure	Consistence (Moist) very friable	Other
	/Layer	(USDA	Moist (Munsell)		Color Cnc : Dpl:	Features	% by	Volume Cobbles &	Structure	Consistence (Moist)	Other
0-14 14-30	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR2/1 10YR4/3	Depth	Color Cnc : Dpl: Cnc :	Features	% by	/ Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	Other
0-14	/Layer A	(USDA Sandy loam	Moist (Munsell) 10YR2/1		Color Cnc : Dpl: Cnc : Dpl:	Features	% by	Volume Cobbles &	Structure	Consistence (Moist) very friable	Other
0-14 14-30	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR2/1 10YR4/3	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6	Features	% by	/ Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	Other
0-14 14-30	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR2/1 10YR4/3	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl:	Features	% by	/ Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	Other
0-14 14-30	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR2/1 10YR4/3	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc :	Features	% by	/ Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	Other
14-30	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR2/1 10YR4/3	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Dpl:	Features	% by	/ Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	Other
0-14 14-30	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR2/1 10YR4/3	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc :	Features	% by	/ Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	Other

Pa. 2/4

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## D. Determination of High Groundwater Elevation

1.	Me	thod Used (Choose one):			Obs. Hole #Ch.A. 4-	<u>1</u> Obs. H	lole #		
		Depth to soil redoximorphic fe	atures		43 inches		inches		
		Depth to observed standing w	ater in observ	ation hole	inches		inches		
		Depth to adjusted seasonal hig (USGS methodology)	gh groundwat	er (S _h )	inches	<u> </u>	inches		
		Index Well Number Sh = Sc - [Sr x (OWc - OWmax)	/OW _r ]	Reading Date					
		Obs. Hole/Well#	Sc	Sr	OWc	OW _{max}	OWr	Sh	

## E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

b. If yes, at what depth was it observed (exclude O, A, and E Horizons)? Upper boundary: 14 Lower boundary: 124 inches Lower boundary: 124 inches Lower boundary: 124 inches inches inches

5



City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

GAT	10/12/2022	
Signature of Soil Evaluator	Date	
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

See site plan for proposed "Chamber Area "" i.e. "Ch.A. 4-1"

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	Owner Name					
	#279-281 Old Oaken Bucket Road		41-1-2-D			
	Street Address		Map/Lot #			
	Scituate	MA	02066			
	City	State	Zip Code			
B.	Site Information					
1.	(Check one) 🛛 New Construction	on 🗌 Upgrade				
2.	Soil Survey nesoil.com	427B		Newfields	fine sandy loa	m, 3-8% slopes, stony
	Source	Soil Map Unit		Soil Series		
	Morraines, till plains, hills	Shallow to restrict	tive layer, shallow to groundwater			
		Soil Limitations				
	Landform	Soli Limitations				
	Coarse-loamy eolian deposits over s					
	Coarse-loamy eolian deposits over s Soil Parent material	andy and supraglacial meltout till	Den .	Thin till		
3.	Coarse-loamy eolian deposits over s Soil Parent material Surficial Geological Report 2	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh	nen	Thin till Map Unit		
3.	Coarse-loamy eolian deposits over s Soil Parent material Surficial Geological Report 2 Y	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh ear Published/Source		Map Unit	acte	
3.	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Y         Non-sorted, non-stratified matrix of s	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh ear Published/Source		Map Unit	asts	
3.	Coarse-loamy eolian deposits over s Soil Parent material Surficial Geological Report 2 Y	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh fear Published/Source and, some silt, and little clay contain	ning scattered pebble, cobble, and	Map Unit	asts	
	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Y         Non-sorted, non-stratified matrix of s         Description of Geologic Map Unit:	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh fear Published/Source and, some silt, and little clay contain		Map Unit	asts	
	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Y         Non-sorted, non-stratified matrix of s         Description of Geologic Map Unit:	andy and supraglacial meltout till 1018 - Stone, Stone, DiGiacomo-Coh ear Published/Source and, some silt, and little clay contain Vithin a regulatory floodway?	ning scattered pebble, cobble, and	Map Unit	asts	
4.	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Y         Non-sorted, non-stratified matrix of s         Description of Geologic Map Unit:	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh ear Published/Source and, some silt, and little clay contain Vithin a regulatory floodway?	ning scattered pebble, cobble, and	Map Unit	asts	
4.	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Non-sorted, non-stratified matrix of s         Description of Geologic Map Unit:         Flood Rate Insurance Map       V	andy and supraglacial meltout till 1018 - Stone, Stone, DiGiacomo-Coh ear Published/Source and, some silt, and little clay contain Vithin a regulatory floodway?	ning scattered pebble, cobble, and Yes 🛛 No	Map Unit	asts	
3. 4. 5.	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Non-sorted, non-stratified matrix of s         Description of Geologic Map Unit:         Flood Rate Insurance Map       V         Within a velocity zone?       Yes	andy and supraglacial meltout till 1018 - Stone, Stone, DiGiacomo-Coh ear Published/Source and, some silt, and little clay contain Vithin a regulatory floodway?	ning scattered pebble, cobble, and	Map Unit		
4.	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Non-sorted, non-stratified matrix of s         Description of Geologic Map Unit:         Flood Rate Insurance Map       V         Within a velocity zone?       Yes         Within a Mapped Wetland Area?	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh ear Published/Source and, some silt, and little clay contain Vithin a regulatory floodway? No Yes No	ring scattered pebble, cobble, and Yes ⊠ No If yes, MassGIS Wetland Data L	Map Unit I boulder cla ayer:	Wetland Type	Below Normal
4.	Coarse-loamy eolian deposits over s         Soil Parent material         Surficial Geological Report       2         Non-sorted, non-stratified matrix of s         Description of Geologic Map Unit:         Flood Rate Insurance Map       V         Within a velocity zone?       Yes	andy and supraglacial meltout till 018 - Stone, Stone, DiGiacomo-Coh ear Published/Source and, some silt, and little clay contain Vithin a regulatory floodway? No Yes No	ning scattered pebble, cobble, and	Map Unit I boulder cla ayer:		Below Normal

Pg. 1/11

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	1 Hole Numb	er: Ch.A. 4-2	10/06	/2022	12:35	5	Sunny, 65F			
			Hole #	Date		Time	v	Veather		Latitude	Longitude
Land L	Use Woodl				Trees/low-ly	ing brush	None				3-5%
. Luna	(e.g., w		ural field, vacant lot, e		Vegetation			the second s		ones, boulders, e	etc.) Slope (%)
escriptio	n of Location	i: We	ooded/vegetated area	a approx. 8	80 feet NE of BVV	V, refer to site plan	"Chamber	Area 4" south	end of syster	m	
. Soil Pa	arent Materia		oamy eolian depo gravelly supraglad			Il plains		Footslop			TO DELA
					La	natorm		Position on	Landscape	(SU, SH, BS, FS	, 15, Plain)
. Distan	ices from:	Oper	n Water Body	>500 fee	et	Drainag	ge Way 🚊	-240 feet		Wetlan	nds <u>~80</u> feet
		0.2	Descente Line .	110		Drinking Mot		lo trat		0#	
			Property Line	-110 fee	it.	Drinking Wat	er wen <u>n</u>	va teet		Oth	ner feet
Unsui	table Materi	als Present	🗌 Yes 🖾 No	If Yes:	Disturbed	Soil/Fill Material	Г (Г	] Weathered	/Fractured	Rock Be	drock
Unau	lable Materi	als i reserit.				Comit in Materia		, mounded	in radiatou		
	1		57.11		1000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	distante o	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Same Sa	
Groun	dwater Obse	erved: 🗌 Yes	s 🛛 No		If yes	S: Depth	to Weeping	in Hole	_	Depth to Sta	anding Water in Hole
. Groun	dwater Obse	erved: 🗌 Yes	s 🛛 No		If yes	Si Depth	to Weeping	) in Hole	-	Depth to Sta	anding Water in Hole
. Groun						Soil Log	Coarse	Fragments	-		anding Water in Hole
	Soil Horizon	Soil Texture	Soil Matrix: Color-		lf yes Redoximorphic	Soil Log	Coarse	Fragments Volume	Soil	Soil Consistence	anding Water in Hole Other
				Depth		Soil Log	Coarse	Fragments	Soil Structure	Soil	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphic	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphic Color	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence	
Depth (in) 0-6	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1	Depth	Redoximorphic Color Cnc :	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphic Color Cnc Dpl:	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
Depth (in) 0-6 6-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorphic Color Cnc : Dpl: Cnc :2.5YR3/6	Soil Log	Coarse % by	Fragments / Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-36	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorphic Color Cnc : Dpl: Cnc :2.5YR3/6 Dpl:	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in) 0-6 6-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorphic Color Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc :	Soil Log	Coarse % by	Fragments / Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorphic Color Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Dpl:	Soil Log	Coarse % by	Fragments / Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorphic Color Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc :	Soil Log	Coarse % by	Fragments / Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorphic Color Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	Soil Log	Coarse % by	Fragments / Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorphic Color Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	Soil Log	Coarse % by	Fragments / Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	

2/4

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## **D. Determination of High Groundwater Elevation**

Method Used (Choose one):	Obs. Hole # Ch.A. 4-2	Obs. Hole #	
Depth to soil redoximorphic features	32 inches	inches	
Depth to observed standing water in observation hole	inches	inches	
<ul> <li>Depth to adjusted seasonal high groundwater (Sh) (USGS methodology)</li> </ul>	inches	inches	
Index Well Number Reading Date			
$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$			
Obs. Hole/Well# Sc Sr	OWc OV	Wmax OWr	Sh

## E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

- b. If yes, at what depth was it observed (exclude O, A, and E Horizons)?
- c. If no, at what depth was impervious material observed?

Upper boundary:	6	Lower boundary:	126
	inches		inches
Upper boundary:		Lower boundary:	
	inches		inches

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

	10/12/2022	
Signature of Soil Evaluator	Date	
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Field Diagrams: Use this area for field diagrams:

See site plan for proposed location of "Chamber Area 4"

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

٩.	Facility Information					
	The Lovendale Company, LLC					
	Owner Name		100 To 100			
	#279-281 Old Oaken Bucket Road		41-1-2-D			
	Street Address	111	Map/Lot #			
	Scituate	MA State	02066 Zip Code			
	City	State	zh code			
3.	Site Information					
	(Check one) 🛛 New Construction 🗌 U	pgrade				
	Soil Survey nesoil.com	427B	Newfield	Is fine sandy loar	m, 3-8% slopes, stony	
	Source	Soil Map Unit	Soil Series			
	Morraines, till plains, hills	Shallow to restrictive layer, sh	allow to groundwater			
	Landform	Soil Limitations				
	Coarse-loamy eolian deposits over sandy and sup	raglacial meltout till				
	Soil Parent material					
	Surficial Geological Report 2018 - Stone, St	Stone, DiGiacomo-Cohen	Thin till	Thin till		
	Year Published/Sc		Map Unit			
	Non-sorted, non-stratified matrix of sand, some sil	t, and little clay containing scattered	pebble, cobble, and boulder c	lasts		
	Description of Geologic Map Unit:					
	Flood Rate Insurance Map Within a regulat	ory floodway? 🗌 Yes 🛛 N	lo			
i.	Within a velocity zone? 🗌 Yes 🛛 No					
	Within a Mapped Wetland Area?	⊲ No If yes, Mas	sGIS Wetland Data Layer:			
•				Wetland Type		
	Current Water Resource Conditions (USGS):	10/06/2022 Month/Day/ Year	Range: 🗌 Above Normal	🛛 Normal	Below Normal	
1						

P3.14

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb			5/2022	11:15	5	Sunny, 65F			
			Hole #	Date		Time		Weather		Latitude	Longitude
. Land I		rown drivewa		A. N		ss, low-lying bi		None	ashking of	anna hauldana a	3-5%
Vacariatia			ural field, vacant lot, e ea near NW corner of		Vegetatio			Surface Stones (e.g.	, coddles, st	ones, boulders, e	tc.) Slope (%)
escriptio	n of Locatio	I. <u>A</u>	ea near nov comer of	Toxisting 2	2-Story norm	6 #210, Telef to 5	ite plan				-
. Soil P	arent Materi		oamy eolian depo		er sandy	Till plains		Footslop	e		
	and gravelly supraglad			ial till		Landform				(SU, SH, BS, FS,	TS, Plain)
	and the second	0	Mater Dade	500 r						Motion	da 120 r r
. Distan	nces from:	Oper	n Water Body 2	>500 fee	et	D	Jrainage vva	ay <u>~235</u> feet		Wetlan	nds <u>~130</u> feet
			Property Line	~150 fee	et	Drinkin	a Water We	ell n/a feet		Oth	er feet
				15.1	dan see			이 그렇는 것이 있는 것			
Unsui	itable Mater	ials Present:	🛛 Yes 🗌 No	If Yes:	🛛 Disti	urbed Soil/Fill M	Material	Weathered	/Fractured	Rock 🛛 Be	drock
Groun	ndwater Obs	erved: 🛛 Yes	s 🗌 No		1	If yes: <u>66 inc</u>	ches Depth to	Weeping in Hole	11.	Depth to Sta	anding Water in Hole
Groun	ndwater Obs	erved: 🛛 Yes	5 🗌 No		1		1.1	o Weeping in Hole	-	Depth to Sta	anding Water in Hole
. Groun	ndwater Obs	erved: 🛛 Yes	5 🗌 No			Soil Log	9				anding Water in Hole
	Soil Horizon	Soil Texture	Soil Matrix: Color-				9	oarse Fragments % by Volume	Soil	Depth to Sta Soil Consistence	anding Water in Hole Other
. Groun Depth (in)				Depth	Redoximor	Soil Log	g C	oarse Fragments	Soil Structure	Soil	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	-	Redoximor	Soil Log	g C	oarse Fragments % by Volume	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-	-	Redoximor	Soil Log	g C	oarse Fragments % by Volume		Soil Consistence	
Depth (in) 0-18	Soil Horizon /Layer FILL	Soil Texture (USDA N/A	Soil Matrix: Color- Moist (Munsell) N/A	-	Redoximor Co Cnc :	Soil Log	g C	oarse Fragments % by Volume	Structure N/A	Soil Consistence (Moist) N/A	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	-	Redoximor Co Cnc : Dpl:	Soil Log	g C	oarse Fragments % by Volume	Structure	Soil Consistence (Moist) N/A	
Depth (in) 0-18 18-22	Soil Horizon /Layer FILL A	Soil Texture (USDA N/A Sandy loam	Soil Matrix: Color- Moist (Munsell) N/A 10YR2/1	-	Redoximor Co Cnc : Dpl: Cnc :	Soil Log	g C	oarse Fragments % by Volume	Structure N/A granular	Soil Consistence (Moist) N/A very friable	
Depth (in) 0-18	Soil Horizon /Layer FILL	Soil Texture (USDA N/A	Soil Matrix: Color- Moist (Munsell) N/A	-	Redoximor Co Cnc : Dpl: Cnc : Dpl:	Soil Log	g C	oarse Fragments % by Volume	Structure N/A	Soil Consistence (Moist) N/A	
Depth (in) 0-18 18-22 22-40	Soil Horizon /Layer FILL A B	Soil Texture (USDA N/A Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) N/A 10YR2/1 10YR4/3	Depth	Redoximor Crc : Dpl: Crc : Dpl: Crc :	Soil Log rphic Features olor Pe	g C	oarse Fragments % by Volume avel Cobbles & Stones	Structure N/A granular massive	Soil Consistence (Moist) N/A very friable friable	
Depth (in) 0-18 18-22	Soil Horizon /Layer FILL A	Soil Texture (USDA N/A Sandy loam	Soil Matrix: Color- Moist (Munsell) N/A 10YR2/1	-	Redoximor Crc : Dpl: Cnc : Dpl: Cnc : Dpl: Cnc : Dpl:	Soil Log rphic Features olor Pe	g C	oarse Fragments % by Volume	Structure N/A granular	Soil Consistence (Moist) N/A very friable friable	
Depth (in) 0-18 18-22 22-40	Soil Horizon /Layer FILL A B	Soil Texture (USDA N/A Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) N/A 10YR2/1 10YR4/3	Depth	Redoximor Crc : Dpl: Crc : Dpl: Crc : Dpl: Crc : Dpl: Crc :2.5Yl	Soil Log rphic Features olor Pe	g C	oarse Fragments % by Volume avel Cobbles & Stones	Structure N/A granular massive	Soil Consistence (Moist) N/A very friable friable	
Depth (in) 0-18 18-22 22-40	Soil Horizon /Layer FILL A B	Soil Texture (USDA N/A Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) N/A 10YR2/1 10YR4/3	Depth	Redoximor Crc : Dpl: Crc : Dpl: Crc : Dpl: Crc : Dpl: Crc :2.5YI Dpl:	Soil Log rphic Features olor Pe	g C	oarse Fragments % by Volume avel Cobbles & Stones	Structure N/A granular massive	Soil Consistence (Moist) N/A very friable friable	
Depth (in) 0-18 18-22 22-40	Soil Horizon /Layer FILL A B	Soil Texture (USDA N/A Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) N/A 10YR2/1 10YR4/3	Depth	Redoximor Crc : Dpl: Crc : Dpl: Crc : Dpl: Crc : Dpl: Crc :2.5YI Dpl: Crc :	Soil Log rphic Features olor Pe	g C	oarse Fragments % by Volume avel Cobbles & Stones	Structure N/A granular massive	Soil Consistence (Moist) N/A very friable friable	

2/4

9.

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### **D. Determination of High Groundwater Elevation**

1.	Method Used (Choose one):		Obs. Hole #Septic 3	Obs. Hole #	
	Depth to soil redoximorphic features		43 inches	inches	
	Depth to observed standing water in observe	ation hole	inches	inches	
	Depth to adjusted seasonal high groundwate (USGS methodology)	er (S _h )	inches	inches	
	Index Well Number Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Reading Date			
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max} OW _r	Sh

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

- b. If yes, at what depth was it observed (exclude O, A, and E Horizons)? Upp
- c. If no, at what depth was impervious material observed?

Upper boundary:	22	Lower boundary:	130
	inches		inches
Upper boundary:		Lower boundary:	
	inches	1000 million (0-3	inches

City/Town of Scituate

## Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

( lit	10/12/2022
Signature of Soil Evaluator	Date
Christopher McEntee, SE14021	06/30/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green, SE14374	Town of Scituate
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See gite plan. "Septic 3" test hole performed at New corner area of existing 2-story hours at #279 Old Oaten Bucket Read.

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	Owner Name				
	#279-281 Old Oaken Bucket Road		41-1-2-D		
	Street Address		Map/Lot #		
	Scituate	MA	02066		
	City	State	Zip Code		
3.	Site Information				
•	(Check one) 🛛 New Construction	Upgrade			
	Soil Survey nesoil.com	421B	Can	ton fine sandy loam, 0-8% slopes, stony	
	Source	Soil Map Unit		eries	
			Shallow to restrictive layer, shallow to groundwater		
	Morraines, hills, ridges	Shallow to restrictly	ve layer, shallow to groundwater		
	Morraines, hills, ridges	Soil Limitations	ve layer, shallow to groundwater		
	Landform	Soil Limitations			
		Soil Limitations			
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material	Soil Limitations	schist	till	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe	schist	***/	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report 2018 - Stone Year Published/ Non-sorted, non-stratified matrix of sand, some	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source	schist n Thin Map U	Init	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report 2018 - Stone Year Published	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source	schist n Thin Map U	Init	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit:	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source silt, and little clay containir	schist In Thin Map t Ing scattered pebble, cobble, and bould	Init	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report 2018 - Stone Year Published Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit:	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source	schist In Thin Map t Ing scattered pebble, cobble, and bould	Init	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit:	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source silt, and little clay containir	schist In Thin Map t Ing scattered pebble, cobble, and bould	Init	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit: Flood Rate Insurance Map Within a regu	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source silt, and little clay containin latory floodway?	schist In Thin Map U Ing scattered pebble, cobble, and bould es 🖾 No	Init	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit: Flood Rate Insurance Map Within a regu	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source silt, and little clay containir latory floodway?	schist In Thin Map t Ing scattered pebble, cobble, and bould	Jnit ler clasts	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit: Flood Rate Insurance Map Within a regu Within a velocity zone? Yes No Within a Mapped Wetland Area? Yes	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source silt, and little clay containin latory floodway? No	schist m Thin Map U ng scattered pebble, cobble, and bould es INO If yes, MassGIS Wetland Data Layer:	Unit ler clasts Wetland Type	
	Landform Coarse-loamy over sandy melt-out till derived fro Soil Parent material Surficial Geological Report 2018 - Stone Year Published Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit: Flood Rate Insurance Map Within a regu Within a velocity zone? Yes No	Soil Limitations om gneiss, granite, and/or e, Stone, DiGiacomo-Cohe /Source silt, and little clay containin latory floodway?	schist In Thin Map U Ing scattered pebble, cobble, and bould es 🖾 No	Unit er clasts Wetland Type	

Po.

14

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb	er: Unit #1	10/07	7/2022	12:30		Sunny, 65F			
			Hole #	Date	1.1.1.1.1	Time		Neather		Latitude	Longitude
1. Land	Use lawn					lying brush		e boulders			3-5%
r. cone	(e.g., w		ural field, vacant lot, e		Vegetation	1.1.1.1.1.1.1.C.			, cobbles, st	ones, boulders,	etc.) Slope (%)
Descriptio	on of Location	n: Re	efer to site plan "Unit	1" at north	h area of locus, v	west side yard of exi	sting dwellin	ng			
	N - 207.3		Sec. 30.2020								
2. Soil P	arent Materia		amy over sandy			rut at at a s		Destrutes	2		
		schis	ed from gneiss, g	franite, a		Fill plains		Backslop Position on		(SU, SH, BS, FS	TC Disin)
		SCHIS				andronn		Position on	Lanuscape	(30, 30, 65, 73	5, 13, Fiain)
Distan		0.00	Motor Body	>500 fee		Draina	e Way n	12 600		Motio	ndn
3. Distar	nces from:	Oper	n Water Body 2	- <u>500</u> let	er	Dramay	ge way I	I/d leet		Wetla	nds <u>~75</u> feet
		1.10	Property Line	~50 feet		Drinking Wat	er Well n	la feet		Ot	ner feet
		1.000	riopolity Enio			Draining rece				0.	
1. Unsui	itable Materi	als Present:	🗌 Yes 🛛 No	If Yes:	Disturbe	ed Soil/Fill Materia	L E	Weathered	/Fractured	Rock 🛛 Be	edrock
5. Grour	ndwater Obse	erved: 🛛 Yes	No		lf ye	es: 96 inches D	epth to Wee	ping in Hole		Depth to St	anding Water in Hole
5. Grour	ndwater Obse	erved: 🛛 Yes	s 🗌 No		lf ye		epth to Wee	eping in Hole	-	Depth to St	anding Water in Hole
5. Grour	ndwater Obse	erved: 🛛 Yes	s 🗌 No		lf ye	es: <u>96 inches</u> D Soil Log				Depth to St	anding Water in Hole
					lf ye Redoximorphic	Soil Log	Coarse	Fragments	Soil	Soil	
	ndwater Obse Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphic	Soil Log c Features	Coarse % by	Fragments Volume	Soil Structure	Soil Consistence	anding Water in Hole Other
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Depth	Redoximorphic	Soil Log c Features	Coarse	Fragments		Soil	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Depth	Redoximorphic	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Depth	Redoximorphic	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &		Soil Consistence (Moist)	
Depth (in) 0-10	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2	Depth	Redoximorphie Color Cnc :	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Depth	Redoximorphic Color Cnc : Dpl:	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
Depth (in) 0-10 10-19	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximorphic Color Cnc : Dpl: Cnc ;	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2	Depth 32	Redoximorphie Color Cnc : Dpl: Cnc : Dpl:	Soil Log c Features Percent	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable friable	
Depth (in) 0-10 10-19	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximorphia Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-19	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximorphie Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl:	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-19	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximorphie Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc :	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-19	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximorphia Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc :	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-19	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximorphie Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other

t5form11-421B_unit-1

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal . Page 2 of 6

Pg. 2/4

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

# **D. Determination of High Groundwater Elevation**

1.	Method Used (Choose one):			Obs. Hole #Unit #1	Obs. H	lole #		
	Depth to soil redoximorph	Depth to soil redoximorphic features		32 inches		inches		
	Depth to observed standing water in observation hole			inches	بالسلي ا	inches		
[	Depth to adjusted seasona (USGS methodology)	al high groundw	vater (Sh)	inches	<u> </u>	inches		
	Index Well Number Sh = Sc - [Sr x (OWc - OW	/max)/OWr]	Reading Date					
	Obs. Hole/Well#	Sc	Sr	OWc	OW _{max}	OWr	Sh	

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
    - 🛛 Yes 🗌 No
  - b. If yes, at what depth was it observed (exclude O, A, and E Horizons)?
  - c. If no, at what depth was impervious material observed?

Upper boundary:	10	Lower boundary:	110
	inches		inches
Upper boundary:		Lower boundary:	
	inches		inches

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soft evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15 107

	10/12/2022	
Signature of Soil Evaluator	Date	
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan for test hole location at proposed drainage for wit #1

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	The Lovendale Company, LLC Owner Name					
	#279-281 Old Oaken Bucket Road		41-1-2-D			
	Street Address		Map/Lot #			
	Scituate	MA	02066			
	City	State	Zip Code			
<b>B</b> .	(Check one) New Construction	] Upgrade				
		427B		Nowfields	fine sandy loa	m, 3-8% slopes, stony
2.	Soil Survey nesoil.com Source	Soil Map Unit		Soil Series	sine sandy loa	in, 5-070 slopes, stony
	Morraines, till plains, hills		Shallow to restrictive layer, shallow to groundwater			
	Landform	Soil Limitation				
	Coarse-loamy eolian deposits over sandy and	supraglacial meltou	t till			
		supragiacial mettod	c ui			
	Soil Parent material					
3	Soil Parent material Surficial Geological Report 2018 - Sto	ne. Stone, DiGiacon	no-Cohen	Thin till		
3.		ne, Stone, DiGiacon ed/Source	no-Cohen	Thin till Map Unit		
3.	Surficial Geological Report 2018 - Sto	ed/Source		Map Unit	asts	
3.	Surficial Geological Report 2018 - Sto Year Publish	ed/Source		Map Unit	asts	
3. 4.	Surficial Geological Report 2018 - Stor Year Publish Non-sorted, non-stratified matrix of sand, som Description of Geologic Map Unit:	ed/Source		Map Unit	asts	
	Surficial Geological Report       2018 - Story         Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit:       Publish         Flood Rate Insurance Map       Within a regime	ed/Source le silt, and little clay o	containing scattered pebble, co	Map Unit bble, and boulder cla	asts	
4.	Surficial Geological Report       2018 - Story         Non-sorted, non-stratified matrix of sand, some Description of Geologic Map Unit:       Publish         Flood Rate Insurance Map       Within a restriction	ed/Source ne silt, and little clay of gulatory floodway?	Containing scattered pebble, co	Map Unit bble, and boulder cla nd Data Layer:	Wetland Type	
4. 5.	Surficial Geological Report       2018 - Story         Non-sorted, non-stratified matrix of sand, some         Description of Geologic Map Unit:         Flood Rate Insurance Map         Within a velocity zone?         Yes         Within a Mapped Wetland Area?         Yes         Current Water Resource Conditions (USGS):	ed/Source le silt, and little clay of gulatory floodway? No No <u>10/06/2022</u> Month/Day/ Year	Containing scattered pebble, co	Map Unit bble, and boulder cla nd Data Layer:		Below Normal

P2.14

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	1 Hole Numb	er: Unit #10	10/06	5/2022	10:50		Sunny, 65F			and the second se
			Hole #	Date		Time		Weather		Latitude	Longitude
1. Land	Use Wood	and			Trees/lo	ow-lying brush	Non				3-5%
I. Lanu	(e.g., w	oodland, agricultu	ural field, vacant lot, e	etc.)	Vegetatio	n	Surfa	ace Stones (e.g	., cobbles, st	ones, boulders, e	etc.) Slope (%)
Descriptio	n of Location	i: We	ooded/vegetated area	a approx.	180 feet eas	st of BVW, refer to site	plan "Unit 10	0"	1.11		
2. Soil P	arent Materia		amy eolian depo		er sandy	Till plains		Footslop	e		
		and g	ravelly supraglad			Landform		Position or	Landscape	(SU, SH, BS, FS	6, TS, Plain)
3. Dista	nces from:	Oper	n Water Body	<u>&gt;500</u> fee	et	Drain	age Way	<u>~260</u> feet		Wetla	nds <u>~180</u> feet
		1	Property Line	-75 feet		Drinking W	ater Well	n/a feet		Oth	ner feet
						<b>-</b>					
4. Unsu	itable Materi	als Present:	🗌 Yes 🛛 No	If Yes:	Dist	urbed Soil/Fill Mater	ial [	Weathered	/Fractured	Rock 🗌 Be	edrock
											Constant and the Constant of the Constant
5. Grour	ndwater Obse	erved: TYes	No No			If yes: Dep	th to Weepin	g in Hole		Depth to St	anding Water in Hole
5. Grour	ndwater Obse	erved: 🗌 Yes	No No			2	th to Weepin	ig in Hole		Depth to St	anding Water in Hole
5. Grour	ndwater Obse	erved: 🗌 Yes	No No			If yes: Dep Soil Log	_		-	Depth to St	anding Water in Hole
	ndwater Obse Soil Horizon	erved: 🗌 Yes	Soil Matrix: Color-			2	Coars	e Fragments by Volume	Soil	Soil	
				Depth	Redoximo	Soil Log	Coars % b	e Fragments	Soil Structure		anding Water in Hole Other
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Depth	Redoximo	Soil Log	Coars % b	e Fragments by Volume Cobbles &	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Depth	Redoximo	Soil Log	Coars % b	e Fragments by Volume Cobbles &		Soil Consistence (Moist)	
Depth (in) 0-12	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2	Depth	Redoximo Cric :	Soil Log	Coars % b	e Fragments by Volume Cobbles &	Structure	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Depth	Redoximo Co Cnc : Dpl:	Soil Log	Coars % b	e Fragments by Volume Cobbles &	Structure	Soil Consistence (Moist)	
Depth (in) 0-12 12-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximo Crc : Dpl: Crc :	Soil Log rphic Features olor Percen	Coars % b	e Fragments by Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-12	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2	Depth 35	Redoximo Cric : Dpl: Cric : Dpl: Dpl:	Soil Log rphic Features olor Percen	Coars % b	e Fragments by Volume Cobbles &	Structure	Soil Consistence (Moist) very friable	
Depth (in) 0-12 12-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximon Cric : Dpl: Cric : Dpl: Cric :2.5Y	Soil Log rphic Features olor Percen	Coars % b	e Fragments by Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other stratified deposits of si
Depth (in) 0-12 12-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximo Cnc : Dpl: Cnc : Dpl: Cnc :2.5Y Dpl:	Soil Log rphic Features olor Percen	Coars % b	e Fragments by Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other stratified deposits of si
Depth (in) 0-12 12-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximo Cric : Dpl: Cric : Dpl: Cric :2.5Y Dpl: Cric :	Soil Log rphic Features olor Percen	Coars % b	e Fragments by Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other stratified deposits of si
Depth (in) 0-12 12-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximon Cric : Dpl: Cric : Dpl: Cric :2.5Y Dpl: Cric : Dpl: Cric : Dpl:	Soil Log rphic Features olor Percen	Coars % b	e Fragments by Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other stratified deposits of si
Depth (in) 0-12 12-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/3		Redoximon Cric : Dpl: Cric : Dpl: Cric :2.5Y Dpl: Cric : Dpl: Cric : Dpl: Cric :	Soil Log rphic Features olor Percen	Coars % b	e Fragments by Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other stratified deposits of si

44

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### D. Determination of High Groundwater Elevation

L	Method Used (Choose one):		Obs. Hole #Unit #10	0 Obs. Hole #	
	Depth to soil redoximorphic features		35 inches	inches	
	Depth to observed standing water in observ	ation hole	inches	inches	
[	Depth to adjusted seasonal high groundwat (USGS methodology)	er (S _h )	inches	inches	
	Index Well Number Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Reading Date			
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max} OW _r	Sh

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	12	Lower boundary:	120	
			inches		inches	
C.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:		
			inches		inches	

City/Town of Scituate

### Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator	S	

Christopher McEntee, SE14021

Typed or Printed Name of Soil Evaluator / License #

Joshua Green, SE14374

Name of Approving Authority Witness

Date		
06/30/2025		
Expiration Date of License		
Town of Scituate		
Approving Authority		

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan. Test hele for "Unit #10" performed at proposed drainage location is shown on site plan - For unit #10.

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	#279-281 Old Oaken Bucket Road						
	#2/9-281 Old Oaken buckel Road		41-1-2-D				
	Street Address		Map/Lot #				
18	Scituate	MA	02066				
	City	State	Zip Code				
	Site Information (Check one)  V New Construction  U	pgrade					
	Soil Survey nesoil.com	427B			m, 3-8% slopes, stony		
	Source	Soil Map Unit	Soil Series				
	Morraines, till plains, hills Shallow to restrictive layer, shallow to groundwater						
1	Landform	Soil Limitations					
	Coarse-loamy eolian deposits over sandy and sup	raglacial meltout till					
	Soil Parent material						
	Surficial Geological Report 2018 - Stone, St	Stone, DiGiacomo-Cohen	Thin till				
	Year Published/So	urce	Map Unit				
	Non-sorted, non-stratified matrix of sand, some sill	, and little clay containing sc	attered pebble, cobble, and boulder of	lasts			
	Description of Geologic Map Unit:						
	Flood Rate Insurance Map Within a regulat	ory floodway? 🗌 Yes	🛛 No				
ł. –	Flood Rate Insurance Map Within a regulat						
5.	Within a velocity zone? 🗌 Yes 🛛 No						
	Within a Mapped Wetland Area?  Yes	No If yes	, MassGIS Wetland Data Layer:				
j.	Within a Mapped Wetland Area?  Yes		김 씨는 아이는 친구가 있었다. 것	Wetland Type			
7.	Current Water Resource Conditions (USGS):	10/06/2022	Range: Above Normal	Normal	Below Normal		
		Month/Day/ Year 420316070433501 MA-D4W					

Pg.14

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb	er: Unit #16	10/07	/2022	10:00	5	Sunny, 65F			
			Hole #	Date		Time	V	Veather		Latitude	Longitude
Land	Use Wood				Trees/lov	w-lying brush		e boulders p			3-5%
	(e.g., v		ural field, vacant lot, e		Vegetation		Surfac	e Stones (e.g.	, cobbles, st	ones, boulders, e	etc.) Slope (%)
escriptio	n of Locatio	n: SE	E corner of locus, refe	er to site pl	lan "Unit 16"						
Soil P	arent Mater		oamy eolian depo gravelly supraglad		r sandy	Till plains		Footslope Position on		(SU, SH, BS, FS	, TS, Plain)
Distar	nces from:	Oper	n Water Body	> <u>500</u> fee	ət	Drainaç	je Way 🛓			Wetlar	
			Property Line	-20 feet		Drinking Wat	er Well n	/a feet		Oth	ier feet
							-	1	-		
Unsui	itable Mate	rials Present:		If Yes:		rbed Soil/Fill Materia	. <u>L</u>	] Weathered	/Fractured	Rock 🛛 Be	drock
620.0					10			1. 1. 1.		a state of the second second	a state of the state of the bar bar
Groun	ndwater Obs	erved: 🗌 Yes	s 🛛 No		lf	yes: Depth	to Weeping	in Hole	-	Depth to Sta	anding Water in Hole
Groun	ndwater Obs	erved: 🗌 Yes	s 🖾 No		lf	yes: Depth Soil Log	to Weeping	in Hole	-	Depth to Sta	anding Water in Hole
	ndwater Obs Soil Horizon	1	s 🛛 No				Coarse	Fragments	Soil	Soil	
		1		Depth		Soil Log	Coarse	Fragments	Soil Structure		anding Water in Hole Other
epth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	2.2.0	Redoximor	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color- Moist (Munsell)	2.2.0	Redoximor Co	Soil Log	Coarse % by	Fragments Volume Cobbles &		Soil Consistence (Moist)	
epth (in) 0-9	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2	2.2.0	Redoximorp Col	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
epth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell) 10YR3/2	2.2.0	Redoximorp Col Cnc : Dpl:	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
epth (in) 0-9 9-35	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorp Col Cnc : Dpl: Cnc :	Soil Log ohic Features lor Percent	Coarse % by	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
epth (in) 0-9 9-35	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	2.2.0	Redoximorp Col Cnc : Dpl: Cnc : Dpl:	Soil Log ohic Features lor Percent	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
epth (in) 0-9 9-35	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorp Col Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR	Soil Log ohic Features lor Percent	Coarse % by	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
epth (in) 0-9 9-35	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorp Col Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR Dpl:	Soil Log ohic Features lor Percent	Coarse % by	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
epth (in) 0-9 9-35	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorp Col Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR Dpl: Cnc :	Soil Log ohic Features lor Percent	Coarse % by	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
epth (in) 0-9 9-35	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorp Col Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR Dpl: Cnc : Dpl:	Soil Log ohic Features lor Percent	Coarse % by	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-9	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorp Col Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	Soil Log ohic Features lor Percent	Coarse % by	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

# **D. Determination of High Groundwater Elevation**

1. N	Nethod Used (Choose one):		Obs. Hole #Unit #16	Obs. Hole #		
	Depth to soil redoximorphic features		<u>36</u> inches	inches		
	Depth to observed standing water in o	bservation hole	inches	inches		
[	<ul> <li>Depth to adjusted seasonal high group (USGS methodology)</li> </ul>	ndwater (S _h )	inches	inches		
	Index Well Number Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Reading Date				
	Obs. Hole/Well# Sc _	Sr	OWc	OW _{max} OW _r	Sh	

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

Yes 🗌 No

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	9	Lower boundary:	90
			inches		inches
C.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
			inches		inches

City/Town of Scituate

### Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15,107.

	10/12/2022	
Signature of Soil Evaluator	Date	
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan for test hole location at proposed drainge for anit #16

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	The Lovendale Company, LLC Owner Name					
	#279-281 Old Oaken Bucket Road		41-1-2-D			
	Street Address		Map/Lot #			_
	Scituate	MA	02066			
	City	State	Zip Code			
<b>B</b> .	(Check one) I New Construction	Jpgrade				
2.	Soil Survey nesoil.com Source	427B Soil Map Unit		Newfields Soil Series	fine sandy loa	m, 3-8% slopes, stony
	Morraines, till plains, hills					
	Landform	Soil Limitations				
	Coarse-loamy eolian deposits over sandy and su	oraglacial meltout till				
	Soil Parent material					
		Stone DiCincomo Coho	n	Thin till		
3	Surficial Geological Report 2018 - Stone.	Stone, DiGiacomo-Cone				
3.	Surficial Geological Report 2018 - Stone, Year Published/S			Map Unit		
3.	Year Published/S	ource		CONTRACTOR OF CO	asts	
3.		ource		CONTRACTOR OF CO	asts	
	Year Published/S Non-sorted, non-stratified matrix of sand, some s	ource ilt, and little clay containir	ng scattered pebble, cobble, and	CONTRACTOR OF CO	asts	
4.	Year Published/S Non-sorted, non-stratified matrix of sand, some s Description of Geologic Map Unit:	ource ilt, and little clay containir itory floodway?	ng scattered pebble, cobble, and	boulder cla	asts	
4.	Year Published/S         Year Published/S         Non-sorted, non-stratified matrix of sand, some s         Description of Geologic Map Unit:         Flood Rate Insurance Map       Within a regula         Within a velocity zone?       Yes       No	ource ilt, and little clay containir itory floodway?	ng scattered pebble, cobble, and	boulder cla		
4. 5.	Year Published/S         Year Published/S         Non-sorted, non-stratified matrix of sand, some s         Description of Geologic Map Unit:         Flood Rate Insurance Map       Within a regula         Within a velocity zone?       Yes       No         Within a Mapped Wetland Area?       Yes       Yes	ource ilt, and little clay containin itory floodway?	ng scattered pebble, cobble, and es ⊠ No If yes, MassGIS Wetland Data L	boulder cla ayer:	Wetland Type	
3. 4. 5. 7.	Year Published/S         Year Published/S         Non-sorted, non-stratified matrix of sand, some s         Description of Geologic Map Unit:         Flood Rate Insurance Map       Within a regula         Within a velocity zone?       Yes       No         Within a Mapped Wetland Area?       Yes       Yes         Current Water Resource Conditions (USGS):       Yes       Yes	ource ilt, and little clay containin itory floodway? Ye No <u>10/06/2022</u> Month/Day/ Year	ng scattered pebble, cobble, and	boulder cla ayer:		Below Normal

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

	Observation	n Hole Numbe	er: Unit #1/	10/07	2022	10:30	5	Sunny, 65F			-
		Sectors a sector s	Hole #	Date		Time		Veather	1.12	Latitude	Longitude
Land	Use Woodl				Trees/low-	lying brush		e boulders p			3-5%
. Lanu	(e.g., wo		ural field, vacant lot, e		Vegetation		Surfac	e Stones (e.g.	, cobbles, st	ones, boulders, e	tc.) Slope (%)
escriptio	n of Location	I: SE	corner of locus, refe	r to site pl	an "Unit 17"						<u>1</u> ,
. Soil P	arent Materia		oamy eolian depo gravelly supraglad			Till plains		Footslope		(SU, SH, BS, FS,	TS Plain)
. Distar	nces from:	Oper	n Water Body _≥	<u>&gt;500</u> fee			ie Way <u>∼</u>		Lanuscape	Wetlan	
		F	Property Line _	-30 feet		Drinking Wate	er Well n	/a feet		Oth	er feet
Unsui	itable Materi	als Present:	🗌 Yes 🖾 No	If Yes:	Disturb	ed Soil/Fill Material		] Weathered	/Fractured	Rock 🗌 Bee	drock
Grour	ndwater Obse	erved: 🛛 Yes	No No		IT y	es: <u>98 inches</u> De	epth to Wee	ping in Hole		Depth to Sta	nding Water in Hole
						Soil Log	_				
Sandh (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorph			Fragments Volume	Soil	Soil	Other
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Depth	Redoximorph Color	ic Features			Soil Structure	Soil Consistence (Moist)	Other
	/Layer	(USDA	Moist (Munsell)	the second		ic Features	% by	Volume Cobbles &	Structure	Consistence (Moist)	Other
Depth (in) 0-7				the second	Color	ic Features	% by	Volume Cobbles &		Consistence (Moist)	Other
0-7	/Layer A	(USDA Sandy loam	Moist (Munsell) 10YR3/2	the second	Color Cnc :	ic Features	% by	Volume Cobbles &	Structure granular	Consistence (Moist) very friable	Other
	/Layer	(USDA	Moist (Munsell)	the second	Color Cnc : Dpl:	ic Features	% by	Volume Cobbles &	Structure	Consistence (Moist)	Other
0-7 7-36	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	Depth	Color Cnc : Dpl: Cnc :	r Percent	% by	Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
0-7	/Layer A	(USDA Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	the second	Color Cnc : Dpl: Cnc : Dpl:	r Percent	% by	Volume Cobbles &	Structure granular	Consistence (Moist) very friable friable	Other
0-7 7-36	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/	r Percent	% by	Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
0-7 7-36	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/ Dpl:	r Percent	% by	Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
0-7 7-36	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/ Dpl: Cnc :	r Percent	% by	Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
7-36	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/ Dpl: Cnc : Dpl:	r Percent	% by	Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
0-7 7-36	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/ Dpl: Cnc : Dpl: Cnc :	r Percent	% by	Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
0-7 7-36	/Layer A B	(USDA Sandy loam Sandy loam	Moist (Munsell) 10YR3/2 10YR5/6	Depth	Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/ Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	r Percent	% by	Volume Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal . Dage 2 of 6

2/4

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### D. Determination of High Groundwater Elevation

1.	Method Used (Choose one):		Obs. Hole #Unit #17	Obs. Hole #	
	Depth to soil redoximorphic features		38 inches	inches	
	Depth to observed standing water in obser	vation hole	inches	inches	
	Depth to adjusted seasonal high groundwa (USGS methodology)	ter (S _h )	inches	inches	
	Index Well Number Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Reading Date			
	Obs. Hole/Well# Sc	Sr	OWc	OWmax OWr	Sh

### E. Depth of Pervious Material

- Depth of Naturally Occurring Pervious Material 1.
  - Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system? a.

X Yes No No

If yes, at what depth was it observed (exclude O, A, and E Horizons)? b.

If no, at what depth was impervious material observed? C.

Upper boundary:	7	Lower boundary:	108
	inches		inches
Upper boundary:		Lower boundary:	
and the second	inches		inches

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through ( N 1 15 107

	10/12/2022
Signature of Soil Evaluator	Date
Christopher McEntee, SE14021	06/30/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green, SE14374	Town of Scituate
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan for test hole location at proposed drainage for unit #17

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	. Facility Information The Lovendale Company, LLC							
	Owner Name							
	#279-281 Old Oaken Bucket Road		41-1-2-D					
	Street Address		Map/Lot #					
	Scituate	MA	02066					
	City	State	Zip Code					
B	. Site Information							
1.	(Check one) 🛛 New Construction 🗌	Upgrade						
2.	Soil Survey nesoil.com	427B	Newfield	ds fine sandy loa	am, 3-8% slopes, stony			
	Source	Soil Map Unit	Soil Serie		in, e e i elepee, eleng			
	Morraines, till plains, hills	Shallow to restrictive la	Shallow to restrictive layer, shallow to groundwater					
	Landform	Soil Limitations						
	Coarse-loamy eolian deposits over sandy and su	upraglacial meltout till						
	Soil Parent material	apragiacial menour in						
3.		, Stone, DiGiacomo-Cohen	Thin till					
	Year Published/		Map Unit					
	Non-sorted, non-stratified matrix of sand, some	silt, and little clay containing s	scattered pebble, cobble, and boulder	lasts				
	Description of Geologic Map Unit:							
	First Data lasurana Mar Mithia a mari		🖾 No					
4.	Flood Rate Insurance Map Within a regul	latory floodway?   Yes	🖾 No					
5.	Within a velocity zone? Yes X No							
0.								
	Within a Mapped Wetland Area?	⊠ No If y	es, MassGIS Wetland Data Layer:					
6				Wetland Type	<b>—</b> • • • •			
6.		10/06/2022	Range: 🔲 Above Normal	🛛 Normal	Below Normal			
6. 7.	Current Water Resource Conditions (USGS):							
20		Month/Day/ Year S 420316070433501 MA-D4						

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb	per: Unit #19	10/06	6/2022	13:00		Sunny, 65F		Contraction in the	
			Hole #	Date		Time		Weather		Latitude	Longitude
Land	Use Wood				the second se	v-lying brush	None				3-5%
	(e.g., w		ural field, vacant lot, e		Vegetation			ce Stones (e.g.	, cobbles, st	ones, boulders, e	etc.) Slope (%)
escriptio	n of Locatio	n: <u>w</u>	looded/vegetated area	a approx.	80 feet NE of	BVW, refer to site plan	"Unit 19"				
. Soil P	arent Materi		oamy eolian depo		er sandy	Till plains		Footslope	e		
		and	gravelly supraglad			Landform		Position on	Landscape	(SU, SH, BS, FS	, TS, Plain)
. Distar	nces from:	Ope	n Water Body	<u>&gt;500</u> fee	et	Drainaç	ge Way 🚊	-240 feet		Wetlan	nds <u>~80</u> feet
			Property Line	~110 fee	at	Drinking Wat	er Well n	/a feet		Oth	ner feet
			Topolly Ento	110 100		Drinking Hat				<b>U</b> u	
Unsui	itable Mater	ials Present:	🗌 Yes 🖾 No	If Yes:	Distur	bed Soil/Fill Materia	L E	] Weathered	/Fractured	Rock 🛛 Be	edrock
Groun	dwater Obs	erved: TYes	s 🖾 No		If	ves: Depth	to Weeping	in Hole		Depth to St	anding Water in Hole
Groun	ndwater Obs	erved: 🗌 Yes	s 🖾 No		If	yes: Depth	to Weeping	) in Hole		Depth to St	anding Water in Hole
. Groun	ndwater Obs	erved: 🗌 Yes	s 🛛 No			Soil Log	1			Depth to St	anding Water in Hole
	ndwater Obs Soil Horizon	erved: 🗌 Yes	Soil Matrix: Color-	-	lf y Redoximorph	Soil Log	Coarse	in Hole Fragments Volume	Soil	Soil	
				Depth		Soil Log	Coarse	Fragments	Soil Structure		anding Water in Hole Other
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorp	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color- Moist (Munsell)		Redoximorp	Soil Log	Coarse % by	Fragments Volume Cobbles &		Soil Consistence (Moist)	
Depth (in) 0-6	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1	Depth	Redoximorpl Colo Cnc :	Soil Log hic Features or Percent	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell) 10YR2/1		Redoximorpl Cold Cnc : Dpl:	Soil Log hic Features or Percent	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
Depth (in) 0-6 6-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorph Cold Cnc : Dpl: Cnc :2.5YR3	Soil Log hic Features or Percent	Coarse % by	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorph Cold Cnc : Dpl: Cnc :2.5YR3 Dpl:	Soil Log hic Features or Percent	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in) 0-6 6-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorph Cold Cnc : Dpl: Cnc :2.5YR3 Dpl: Cnc :	Soil Log hic Features or Percent	Coarse % by	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorph Cold Cnc : Dpl: Cnc :2.5YR3 Dpl: Cnc : Dpl:	Soil Log hic Features or Percent	Coarse % by	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorph Cold Cnc : Dpl: Cnc :2.5YR3 Dpl: Cnc : Dpl: Cnc :	Soil Log hic Features or Percent	Coarse % by	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorph Cold Cnc : Dpl: Cnc :2.5YR3 Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	Soil Log hic Features or Percent	Coarse % by	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	
Depth (in) 0-6 6-32	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR2/1 10YR4/3	Depth	Redoximorph Cold Cnc : Dpl: Cnc :2.5YR3 Dpl: Cnc : Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	Soil Log hic Features or Percent	Coarse % by	Fragments y Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	

2/11

City/Town of Scituate

**Commonwealth of Massachusetts** 

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### D. Determination of High Groundwater Elevation

Ι.	Method Used (Choose one):		Obs. Hole #Unit #19	Obs. Hole #	
	Depth to soil redoximorphic features		24 inches	inches	
	Depth to observed standing water in observed	vation hole	inches	inches	
	Depth to adjusted seasonal high groundwa (USGS methodology)	ter (S _h )	inches	inches	
	Index Well Number Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Reading Date			
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max} OW _r	Sh

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
    - 1 No X Yes
  - If yes, at what depth was it observed (exclude O, A, and E Horizons)? b.
  - If no, at what depth was impervious material observed? C.

Upper boundary:	6	Lower boundary:	120	
	inches		inches	
Upper boundary:		Lower boundary:		
	inches		inches	

Pg. 3/11

City/Town of Scituate

## Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

	10/12/2022
Signature of Soil Evaluator	Date
Christopher McEntee, SE14021	06/30/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green, SE14374	Town of Scituate
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan for proposed drivinge location for unit #19

**Commonwealth of Massachusetts** 

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

Owner Name			
#279-281 Old Oaken Bucket Road		41-1-2-D	
Street Address	1.11	Map/Lot #	
Scituate	MA	02066	
City	State	Zip Code	
Site Information	1		
(Check one) 🛛 New Construction 🗌 U	pgrade		
Soil Survey nesoil.com	421B	Canton	fine sandy loam, 0-8% slopes, stony
Source	Soil Map Unit	Soil Series	5
Morraines, hills, ridges	Shallow to restrictive la	yer, shallow to groundwater	
Landform	Soil Limitations		
Coarse-loamy over sandy melt-out till derived from	oneiss granite and/or schi	ist	
Soil Parent material	- grienes, granne, errerer bern		
		This All	
Surficial Geological Report 2018 - Stone.	Stone, DiGiacomo-Cohen	Thin till	
Surficial Geological Report 2018 - Stone, Store, St	Stone, DiGiacomo-Cohen	Map Unit	
Year Published/So	ource	Map Unit	clasts
	ource	Map Unit	lasts
Year Published/So Non-sorted, non-stratified matrix of sand, some sil	urce t, and little clay containing so	Map Unit	lasts
Year Published/So Non-sorted, non-stratified matrix of sand, some sil Description of Geologic Map Unit:	urce t, and little clay containing so	Map Unit cattered pebble, cobble, and boulder of	lasts
Year Published/So         Non-sorted, non-stratified matrix of sand, some sil         Description of Geologic Map Unit:         Flood Rate Insurance Map       Within a regulat         Within a velocity zone?       Yes       No	t, and little clay containing so ory floodway?	Map Unit cattered pebble, cobble, and boulder of	lasts
Year Published/So         Non-sorted, non-stratified matrix of sand, some sil         Description of Geologic Map Unit:         Flood Rate Insurance Map       Within a regulat         Within a velocity zone?       Yes       No	ource t, and little clay containing so ory floodway?	Map Unit cattered pebble, cobble, and boulder of	Wetland Type
Year Published/Sc         Non-sorted, non-stratified matrix of sand, some sil         Description of Geologic Map Unit:         Flood Rate Insurance Map       Within a regulat         Within a velocity zone?       Yes       No	t, and little clay containing so ory floodway?	Map Unit cattered pebble, cobble, and boulder of	

44

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb	er: Unit #2	10/07	/2022	12:10	5	Sunny, 65F			Concerns to the second s
			Hole #	Date		Time	V	Veather		Latitude	Longitude
. Land	lise lawn				Trees/low-	lying brush		e boulders p			3-5%
Lanu	(e.g., v		ural field, vacant lot, e		Vegetation	1. 1. 1. 1. S.		e Stones (e.g.	, cobbles, st	ones, boulders, e	etc.) Slope (%)
Descriptio	n of Locatio	n: Re	fer to site plan "Unit :	2" at north	area of locus, 1	front yard of existing	dwelling				
2. Soil P	arent Mater	deriv	oamy over sandy ed from gneiss, g		and/or	Fill plains		Backslop		(011 011 DC ED	70.01.11
		schis	t			andform		Position on	Landscape	(SU, SH, BS, FS	, IS, Plain)
3. Distar	nces from:	Oper	Water Body	> <u>500</u> fee	ət	Drainag	ge Way <u>n</u>	/a feet		Wetla	nds <u>~120</u> feet
			Property Line	-35 feet		Drinking Wat	er Well <u>n</u>	/a feet		Oth	ner feet
4. Unsu	itable Mate	rials Present:	🗌 Yes 🛛 No	If Yes:	Disturbe	ed Soil/Fill Materia	Ē	] Weathered	/Fractured	Rock 🛛 Be	drock
5. Grour	ndwater Obs	erved: 🗌 Yes	No		If ye	es: Depth	to Weeping	in Hole	_	Depth to St	anding Water in Hole
5. Grour	ndwater Obs	erved: 🗌 Yes	No 🛛		lf y€	10 1 10 10 10 10 10 10 10 10 10 10 10 10	to Weeping	in Hole	-	Depth to St	anding Water in Hole
	ndwater Obs Soil Horizon	1	Soil Matrix: Color-		lf ye Redoximorphi	Soil Log	Coarse	Fragments	Soil	Soil	
5. Grour Depth (in)		1		Depth		Soil Log c Features	Coarse	Fragments	Soil Structure		anding Water in Hole Other
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	-	Redoximorphi	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-	-	Redoximorphi Color	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &		Soil Consistence (Moist)	
Depth (in) 0-13	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2	-	Redoximorphi Color Cnc :	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	-	Redoximorphi Color Cnc : Dpl:	Soil Log c Features	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
Depth (in) 0-13 13-27	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc :	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-13	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	-	Redoximorphi Color Cnc : Dpl: Cnc : Dpl:	Soil Log c Features Percent	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable friable	
Depth (in) 0-13 13-27	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/(	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-13 13-27	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl:	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-13 13-27	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl: Cnc :	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-13 13-27	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl: Cnc : Dpl:	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-13 13-27	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl: Cnc : Dpl: Cnc :	Soil Log c Features Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other

2/11

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### D. Determination of High Groundwater Elevation

Method Used (Choose one):			Obs. Hole #Unit #2	Obs.	Hole #	
Depth to soil redoximorphic	features		49 inches		_ inches	
Depth to observed standing	g water in observ	vation hole	inches		_ inches	
Depth to adjusted seasona (USGS methodology)	l high groundwa	ter (S _h )	inches		_ inches	
Index Well Number Sh = Sc - [Sr x (OWc - OWr	nax)/OWr]	Reading Date				
Obs. Hole/Well#	Sc	Sr	OWc	OW _{max}	OWr	Sh
	<ul> <li>Depth to soil redoximorphic</li> <li>Depth to observed standing</li> <li>Depth to adjusted seasona (USGS methodology)</li> <li>Index Well Number</li> <li>Sh = Sc - [Sr x (OWc - OWr</li> </ul>	<ul> <li>☑ Depth to soil redoximorphic features</li> <li>☑ Depth to observed standing water in observed</li> <li>☑ Depth to adjusted seasonal high groundwar (USGS methodology)</li> <li>☐ Index Well Number</li> <li>Sh = Sc - [Sr x (OWc - OWmax)/OWr]</li> </ul>	☑ Depth to soil redoximorphic features         ☑ Depth to observed standing water in observation hole         ☑ Depth to adjusted seasonal high groundwater (Sn) (USGS methodology)         Index Well Number       Reading Date         Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Image: Second (consistence on c).         Image: Depth to soil redoximorphic features         Image: Depth to observed standing water in observation hole         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjusted seasonal high groundwater (S _h )         Image: Depth to adjuster (S _h )	Image: Shear of the second (on order of the second product of the second produ	Image: Share of the set

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
    - No No X Yes
  - If yes, at what depth was it observed (exclude O, A, and E Horizons)? b.
  - If no, at what depth was impervious material observed? C.

Upper boundary:	13	Lower boundary:	103
	inches		inches
Upper boundary:		Lower boundary:	
	inches		inches

Pa. 5/4

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my spin-evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15,107.

	10/12/2022	
Signature of Soil Evaluator	Date	
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan for test hale location at proposed draininge for unit #2



City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	The Lovendale Company, LLC							
	Owner Name							
	#279-281 Old Oaken Bucket Road		41-1-2-D					
	Street Address	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Map/Lot #					
	Scituate	MA	02066					
	City	State	Zip Code					
B.	. Site Information							
1.	(Check one) 🛛 New Construction	Upgrade						
2	Soil Survey nesoil.com	427B	Newfiel	lds fine sandy loa	m, 3-8% slopes, stony			
	Source	Soil Map Unit	Soil Serie	Soil Series				
	Morraines, till plains, hills	Shallow to restrictive lay	Shallow to restrictive layer, shallow to groundwater					
	Landform	Soil Limitations						
	Coarse-loamy eolian deposits over sandy and su	praglacial meltout till						
	Soil Parent material	praglacial menout un						
3.		Stone, DiGiacomo-Cohen	Thin till					
э.	Year Published/		Map Unit					
	Non-sorted, non-stratified matrix of sand, some s	alt and little clay containing sca	and the second se					
	Description of Geologic Map Unit:	in and includy settering set						
		atory floodway? 🔲 Yes	No No					
4	Tiood Hate moulanee mee							
4.								
	Within a velocity zone?  Ves X No							
	Within a velocity zone? 🗌 Yes 🛛 No	If yes	MassGIS Wetland Data Laver					
4. 5. 6.		⊠ No	, MassGIS Wetland Data Layer:	Wetland Type				
5. 6.	Within a Mapped Wetland Area?	NO		Wetland Type				
5.	Within a Mapped Wetland Area?  Yes	10/06/2022	, MassGIS Wetland Data Layer: Range: 🔲 Above Normal		Below Normal			
5. 6.	Within a Mapped Wetland Area?  Yes Current Water Resource Conditions (USGS):	NO	Range: 🗌 Above Normal		Below Normal			

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

	Observation	Hole Numbe	er: Unit #20	10/06	/2022	11:30	5	Sunny, 65F			
		1 39 6 8 7 1 1 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hole #	Date	1.1.116.3	Time		Veather		Latitude	Longitude
Land L	Ise Woodl	and			Trees/lov	w-lying brush	None	)			3-5%
Lanu C	(e.g., wo		iral field, vacant lot, e		Vegetation			ce Stones (e.g.	, cobbles, st	ones, boulders, e	etc.) Slope (%)
escription	n of Location	: Wo	ooded/vegetated area	a approx. 6	60 feet east o	of BVW, refer to site plan	n "Unit 20"				<u>a</u> (**** =
Soil Pa	arent Materia		amy eolian depo		r sandy	Till plains		Footslope	2		
		and g	ravelly supraglac	cial till		Landform				(SU, SH, BS, FS	, TS, Plain)
Distan	ces from:	Oper	n Water Body _≥	> <u>500</u> fee	et	Drainag	e Way 🚊	- <u>320</u> feet		Wetlar	nds <u>~60</u> feet
		F	Property Line	-110 fee	t	Drinking Wat	er Well n	/a feet		Oth	ner feet
Unsui	table Materi	als Present:	🗋 Yes 🖾 No	If Yes:	Distu	rbed Soil/Fill Material		] Weathered	/Fractured	Rock 🗌 Be	drock
Groun	dwater Obse	erved: Xes	□ No		lf	yes: 45 inches De	pth to Wee	ping in Hole		Depth to Sta	anding Water in Hole
Crouin			-			Soil Log					
				-		Soli Lug	-	-	1		
	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphic Features			Fragments Volume	0.11	Soil	
Depth (in)	/Layer	JOIL LEVINE	Soll Matrix: Color-				70 D)	volume	Soil		Other
	, Edy of	(USDA	Moist (Munsell)	Depth	Co	lor Percent	Gravel	Cobbles & Stones	Structure	Consistence (Moist)	Other
0.40		(USDA	Moist (Munsell)	Depth	Co Cnc :	lor Percent		Cobbles &	Structure	Consistence (Moist)	Other
0-12	A			Depth		lor Percent		Cobbles &		Consistence (Moist)	Other
	A	(USDA Sandy loam	Moist (Munsell) 10YR3/2	Depth	Cnc :	lor Percent		Cobbles &	Structure granular	Consistence (Moist) very friable	Other
0-12 12-22		(USDA	Moist (Munsell)	Depth	Cnc : Dpl:	lor Percent		Cobbles &	Structure	Consistence (Moist)	Other
12-22	A B	(USDA Sandy Ioam Sandy Ioam	Moist (Munsell) 10YR3/2 10YR5/3		Cnc : Dpl: Cnc :			Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
12-22	A	(USDA Sandy loam	Moist (Munsell) 10YR3/2	Depth 32	Cnc : Dpl: Cnc : Dpl:			Cobbles &	Structure granular	Consistence (Moist) very friable	Other Hole caving in at 112
12-22	A B	(USDA Sandy Ioam Sandy Ioam	Moist (Munsell) 10YR3/2 10YR5/3		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YF			Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
12-22	A B	(USDA Sandy Ioam Sandy Ioam	Moist (Munsell) 10YR3/2 10YR5/3		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YF Dpl:			Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
12-22	A B	(USDA Sandy Ioam Sandy Ioam	Moist (Munsell) 10YR3/2 10YR5/3		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YF Dpl: Cnc :			Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
12-22	A B	(USDA Sandy Ioam Sandy Ioam	Moist (Munsell) 10YR3/2 10YR5/3		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YF Dpl: Cnc : Dpl:			Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	
	A B	(USDA Sandy Ioam Sandy Ioam	Moist (Munsell) 10YR3/2 10YR5/3		Cnc : Dpl: Cnc : Dpl: Cnc :2.5YF Dpl: Cnc : Dpl: Cnc :			Cobbles & Stones	Structure granular massive	Consistence (Moist) very friable friable	



City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### **D. Determination of High Groundwater Elevation**

1.	Method Used (Choose one):	c features		Obs. Hole # <u>Unit #20</u> <u>32</u> inches	Obs. Hole # inches	
	Depth to observed standin		ervation hole	inches	inches	
	Depth to adjusted seasona (USGS methodology)		Reading Date	inches	inches	
	Obs. Hole/Well#	Sc	Sr	OWc	OW _{max} OW _r	Sh

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	12 inches	Lower boundary:	112 inches	-
c	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:		

inches

inches



City/Town of Scituate

## Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15 107

	10/12/2022
Signature of Soil Evaluator	Date
Christopher McEntee, SE14021	06/30/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green, SE14374	Town of Scituate
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

"Unit #20" test hole performed at proposed drainage location for unit 20 as shown on site plan.



City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

bil Survey nesoil.com	MA State	41-1-2-D Map/Lot # 02066 Zip Code					
tituate <b>ite Information</b> Sheck one) I New Construction I Up bil Survey nesoil.com	State	02066					
i <b>te Information</b> Theck one) I New Construction I Up bil Survey nesoil.com	State						
ite Information Theck one) I New Construction I Up bil Survey nesoil.com		Zip Code					
heck one) 🛛 New Construction 🗌 Up	ograde						
bil Survey nesoil.com	ograde						
	427B	Newfiel	ds fine sandy loa	am, 3-8% slopes, ston			
Source	Soil Map Unit	Soil Serie					
orraines, till plains, hills	Shallow to restrictive lay	er, shallow to groundwater					
	Soil Limitations	Soil Limitations					
carso learny eclian denosits over sandy and supr	adlacial meltout till						
	tone. DiGiacomo-Cohen	Thin till					
		Map Unit		-			
on-sorted, non-stratified matrix of sand, some silt,	and little clay containing sca	attered pebble, cobble, and boulder	clasts				
ood Rate Insurance Map Within a regulato	ny floodway? 🗌 Yes	No No					
fithin a velocity zone? 🗌 Yes 🛛 No							
(ithin a Manned Wetland Area?	l No If yes	, MassGIS Wetland Data Layer:					
			the second second second second				
urrent Water Resource Conditions (USGS):		Range: Above Normal	Normal	Below Normal			
	(a) The set Silver and a size of the set	TOD DUVDUDY MA					
	Indform         oarse-loamy eolian deposits over sandy and suproil Parent material         urficial Geological Report       2018 - Stone, S         Year Published/Sou         on-sorted, non-stratified matrix of sand, some silt,         escription of Geologic Map Unit:         lood Rate Insurance Map         /ithin a velocity zone?         Yes         /ithin a Mapped Wetland Area?         Yes         urrent Water Resource Conditions (USGS):	Indform       Soil Limitations         Oarse-loamy eolian deposits over sandy and supraglacial meltout till         Dil Parent material         urficial Geological Report       2018 - Stone, Stone, DiGiacomo-Cohen Year Published/Source         on-sorted, non-stratified matrix of sand, some silt, and little clay containing sca         escription of Geologic Map Unit:         lood Rate Insurance Map       Within a regulatory floodway?         /ithin a velocity zone?       Yes         /ithin a Mapped Wetland Area?       Yes         urrent Water Resource Conditions (USGS):       10/06/2022 Month/Day/ Year	Soil Limitations         Soil Limitations         Soil Limitations         Soil Limitations         Soil Parent material         urficial Geological Report       2018 - Stone, Stone, DiGiacomo-Cohen         Year Published/Source       Thin till         Map Unit       Map Unit         con-sorted, non-stratified matrix of sand, some silt, and little clay containing scattered pebble, cobble, and boulder         escription of Geologic Map Unit:         lood Rate Insurance Map       Within a regulatory floodway?         Vithin a velocity zone?       Yes         Vithin a Mapped Wetland Area?       Yes         urrent Water Resource Conditions (USGS):       10/06/2022 Month/Day/ Year	Indform       Soil Limitations         Oarse-loamy eolian deposits over sandy and supraglacial meltout till         Dil Parent material         urficial Geological Report       2018 - Stone, Stone, DiGiacomo-Cohen         Year Published/Source       Thin till         On-sorted, non-stratified matrix of sand, some silt, and little clay containing scattered pebble, cobble, and boulder clasts         sescription of Geologic Map Unit:         lood Rate Insurance Map       Within a regulatory floodway?       Yes       No         /ithin a velocity zone?       Yes       No       If yes, MassGIS Wetland Data Layer:       Wetland Type         urrent Water Resource Conditions (USGS):       10/06/2022       Range:       Above Normal       Normal			

Ps. Vu

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	1 Hole Numb	er: Unit#o	10/07	/2022	11:20	S	Sunny, 65F			and a second sec
			Hole #	Date		Time		Veather		Latitude	Longitude
1. Land	Use Wood					lying brush		e boulders p			3-5%
r. Lund	(e.g., wo	oodland, agricultu	ural field, vacant lot, e	etc.)	Vegetation		Surfac	e Stones (e.g.	, cobbles, st	ones, boulders,	etc.) Slope (%)
Descriptio	n of Location	n: Re	fer to site plan "Unit i	8"				12.246.6			
2. Soil P	arent Materia		pamy eolian depo gravelly supraglad			Till plains		Footslope Position on		(SU, SH, BS, FS	S, TS, Plain)
3. Distar	nces from:	Oper	Water Body 3	> <u>500</u> fee	ət	Drainag	je Way 👱			Wetla	
			Property Line	-30 feet		Drinking Wat	er Well n	la feet		Oth	ner feet
		Least of a			-						
. Unsui	itable Materi	als Present:	🗌 Yes 🛛 No	If Yes:	Disturb	ed Soil/Fill Material		Weathered	/Fractured	Rock Be	edrock
					16		to Manning	in Hala		Donth to St	anding Water in Hole
. Groun	ndwater Obse	erved: 🗌 Yes	No No		ir ye	es: Depth	to weeping	In Hole		Depth to St	anding water in hole
5. Groun	ndwater Obse	erved: 🗌 Yes	No No		ii y		to weeping	III HOle		Depin to St	
			2		Redoximorphi	Soil Log	Coarse	Fragments	Soil	Soil	
	ndwater Obse Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Depth		Soil Log	Coarse	Fragments Volume Cobbles &	Soil Structure		Other
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphi	Soil Log	Coarse % by	Fragments Volume	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-		Redoximorphi	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence	
Depth (in) 0-10	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2		Redoximorphi Color Cnc :	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		Redoximorphi Color Cnc : Dpl: Cnc :	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
Depth (in) 0-10 10-21	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl:	Soil Log ic Features r Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2		Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/	Soil Log ic Features r Percent	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in) 0-10 10-21	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl:	Soil Log ic Features r Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-21	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl: Cnc :	Soil Log ic Features r Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-21	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl: Cnc : Dpl:	Soil Log ic Features r Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-21	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/ Dpl: Cnc : Dpl: Cnc :	Soil Log ic Features r Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-10 10-21	Soil Horizon /Layer A B	Soil Texture (USDA Sandy loam Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	Redoximorphi Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/0 Dpl: Cnc : Dpl:	Soil Log ic Features r Percent	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other

2/4

3

Ê

**Commonwealth of Massachusetts** 

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### **D. Determination of High Groundwater Elevation**

1. N	Nethod Used (Choose one):			Obs. Hole # Unit #8	Obs	s. Hole #		
D	Depth to soil redoximorphic	features		24 inches	-	inches		
٢	Depth to observed standing	water in observ	ation hole	inches	-	inches		
۵	Depth to adjusted seasonal (USGS methodology)	high groundwat	er (S _h )	inches	-	inches		
	Index Well Number Sh = Sc - [Sr x (OWc - OWm	ax)/OWr]	Reading Date					
	Obs. Hole/Well#	Sc	Sr	OWc	OWmax	OWr	Sh	
	Obs. Hole/Well#	Sc	Sr	OWc	OWmax	OWr	Sh	<del></del> `)

### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

- b. If yes, at what depth was it observed (exclude O, A, and E Horizons)? Upper boundary: 10 Lower boundary: 101 inches
- c. If no, at what depth was impervious material observed?

Upper boundary:	10	Lower boundary:	101
	inches		inches
Upper boundary:		Lower boundary:	
	inches	2 10 10 10 10 10 EV	inches

City/Town of Scituate

## Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15 107

( LA	10/12/2022	
Signature of Soil Evaluator	Date	_
Christopher McEntee, SE14021	06/30/2025	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Joshua Green, SE14374	Town of Scituate	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan for test hule location at proposed drainage for unit #8.

City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A.	Facility Information			
	The Lovendale Company, LLC			
	Owner Name			
	#279-281 Old Oaken Bucket Road		41-1-2-D	
	Street Address		Map/Lot #	
	Scituate	MA	02066	
	City	State	Zip Code	
B.	Site Information			
1.	(Check one) 🛛 New Construction 🗌 U	pgrade		
2.	Soil Survey nesoil.com	427B	Newfields	s fine sandy loam, 3-8% slopes, stony
-	Source	Soil Map Unit	Soil Series	<u></u> -,,,,
	Morraines, till plains, hills	Shallow to restrictive layer, sl	nallow to groundwater	
	Landform	Soil Limitations		
	Coarse-loamy eolian deposits over sandy and sup	radiacial meltout till		
	Soil Parent material	ragiacial menode in		
3.		Stone, DiGiacomo-Cohen	Thin till	
<b>U</b> .	Year Published/So		Map Unit	
	Non-sorted, non-stratified matrix of sand, some sil	t, and little clay containing scattere	d pebble, cobble, and boulder cl	asts
	Description of Geologic Map Unit:			
4.	Flood Rate Insurance Map Within a regulat	ory floodway? 🗌 Yes 🛛 🛛	No	
5.	Within a velocity zone?  Yes  No			
6.	Within a Mapped Wetland Area?  Yes	☑ No If yes, Mas	ssGIS Wetland Data Layer:	
0.		Contraction of the second s		Wetland Type
7.	Current Water Resource Conditions (USGS):	10/06/2022 Month/Day/ Year	Range: 🔲 Above Normal	Normal 🗌 Below Normal
8.	Other references reviewed: USGS (Zone II, IWPA, Zone A, EEA Data Portal, etc.)	420316070433501 MA-D4W 79R	DUXBURY, MA	

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	h Hole Numb	er: Unit #9	10/07	/2022	11:00	5	Sunny, 65F			
		2010-2010 ( Concern	Hole #	Date		Time	V	Veather		Latitude	Longitude
Land L	Iso Wood	land			Trees/low-lying	g brush	Some	e boulders p	present		3-5%
Land C	(e.g., w		ural field, vacant lot, e		Vegetation		Surfac	e Stones (e.g.	, cobbles, st	ones, boulders, e	etc.) Slope (%)
Descriptio	n of Location	n: Re	fer to site plan "Unit s	9"							
2. Soil Pa	arent Materia		amy eolian depo ravelly supraglad		100 1	olains		Footslope		/011 011 DO EO	
			<u>,,</u> 1 3		Landi	rorm		Position on	Landscape	(SU, SH, BS, FS	, IS, Plain)
3. Distan	ices from:	Oper	Water Body 2	>500 fee	et	Drainag	e Way 🚊	250 feet		Wetlan	nds <u>~150</u> feet
			Property Line ~	-20 feet		Drinking Wate	er Well n	/a feet		Oth	ner feet
			Toperty Ento	20 1001		Brinning true					
. Unsui	table Mater	als Present:	🗌 Yes 🛛 No	If Yes:	Disturbed S	oil/Fill Material		Weathered	/Fractured	Rock 🗌 Be	drock
								i santi		12-12-5	
Groun	dwater Obs	erved TYes	No No		If yes;	Depth	to Weeping	in Hole		Depth to St	anding Water in Hole
5. Groun	ndwater Obse	erved: 🗌 Yes	No No			Depth	to Weeping	in Hole		Depth to St	anding Water in Hole
5. Groun	ndwater Obse	erved: 🗌 Yes	No No			Depth Soil Log			-	Depth to St	anding Water in Hole
	ndwater Obse	erved: 🗌 Yes	Soil Matrix: Color-			ioil Log	Coarse	Fragments Volume	Soil	Soil	
				Depth	5	ioil Log	Coarse	Fragments	Soil Structure		anding Water in Hole Other
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		S Redoximorphic Fe	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
	Soil Horizon	Soil Texture	Soil Matrix: Color-		S Redoximorphic Fe Color	Soil Log	Coarse % by	Fragments Volume Cobbles &		Soil Consistence (Moist)	
Depth (in) 0-8	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2		S Redoximorphic Fe Color Cnc :	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure granular	Soil Consistence (Moist) very friable	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		S Redoximorphic Fe Color Cnc : Dpl:	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure	Soil Consistence (Moist)	
Depth (in) 0-8 8-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	S Redoximorphic Fe Color Cnc : Dpl: Cnc :	Soil Log	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-8	Soil Horizon /Layer A	Soil Texture (USDA Sandy loam	Soil Matrix: Color- Moist (Munsell) 10YR3/2		S Redoximorphic Fe Color Cnc : Dpl: Cnc : Dpl:	Soil Log	Coarse % by	Fragments Volume Cobbles &	Structure granular massive	Soil Consistence (Moist) very friable	
Depth (in) 0-8 8-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	S Redoximorphic Fe Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6	Soil Log	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-8 8-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	S Redoximorphic Fe Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl:	Soil Log	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-8 8-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	S Redoximorphic Fe Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc :	Soil Log	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-8 8-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	S Redoximorphic Fe Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc : Dpl:	Soil Log	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other
Depth (in) 0-8 8-36	Soil Horizon /Layer A B	Soil Texture (USDA Sandy Ioam Sandy Ioam	Soil Matrix: Color- Moist (Munsell) 10YR3/2 10YR5/6	Depth	S Redoximorphic Fe Color Cnc : Dpl: Cnc : Dpl: Cnc :2.5YR3/6 Dpl: Cnc : Dpl: Cnc : Dpl: Cnc :	Soil Log	Coarse % by Gravel	Fragments Volume Cobbles & Stones	Structure granular massive	Soil Consistence (Moist) very friable friable	Other

Pa.

2/1

City/Town of Scituate

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### D. Determination of High Groundwater Elevation

1.	Method Used (Choose one):		Obs. Hole # <u>Unit #9</u>	Obs. Hole #	
	Depth to soil redoximorphic features		<u>30</u> inches inches	inches	
	Depth to observed standing water in observed	vation hole		inches	
	<ul> <li>Depth to adjusted seasonal high groundwa (USGS methodology)</li> </ul>	iter (Sh)	inches	inches	
	Index Well Number Sh = Sc - [Sr x (OWc - OWmax)/OWr]	Reading Date			
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max} OW _r	Sh

#### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

🛛 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	8	Lower boundary:	86
			inches		inches
C.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	

inches

inches



City/Town of Scituate

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of pay soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15 107

	10/12/2022
Signature of Soil Evaluator	Date
Christopher McEntee, SE14021	06/30/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green, SE14374	Town of Scituate
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

See site plan for test pit location at proposed drainage for unit #9

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## A. Facility Information

.

Salt Meadow Develo	pment/Miraglia Jon S	+ Barbara TRS
279/281 Old Dake Street Address		41-1-3-0/41-1-3-B
Scituate City		DZOL06 Zip Code

#### **B. Site Information**

1.	(Check one)	New Construction	Upgrade

2.	Soll Survey Web Soil Survey 4273- New Fields FSL New Fields Fine Sandy Loan
	Landform Landform Soil plains, Itills Shallow to Groundwater, Shallow to Restrictive Layer
	Soil Parent material supraglacial method
3.	Surficial Geological Report 2015 - Stone, Stone, Diagracomo Thin till
	Description of Geologic Man Unite - Stratified matrix of Sand, some sitt and little clay containing
	Description of Geologic Map Unit: Scattered Pebble, cobble and boulder deposits
4.	Flood Rate Insurance Map Within a regulatory floodway?  Yes X No
5,	Within a velocity zone? 🗌 Yes 🖾 No
6.	Within a Mapped Wetland Area?  Yes X No If yes, MassGIS Wetland Data Layer:
7.	Current Water Resource Conditions (USGS): 10/0/2022 Range: Above Normal Solutions (USGS): 10/0/2022
8.	Other references reviewed: (Zone II, IWPA, Zone A, EEA Data Portal, etc.)

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

# C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

											Longitude
Land Us	(e.g., v	woodland, agrici	ultural field, vacant lo	t, etc.)	Vegetation	5	Surface	e Stones (e.g.,	cobbles, sto	ones, boulders, etc	:) <u>3-5010</u> Slope (%)
Descript	tion of Locat	ion:	Rear of	nou	se, Belou	o deck	ind	a heavi	ly veg	etated a	rea
					Landform				-		
Distance	es from:	Open	Water Body >	<u>D</u> fee	et	Drainage	Way 2	50_feet		Wetlan	ds >50_feet
		F	Property Line	D fee	et Dri	nking Water	Well >	10D feet		Othe	er N/A feet
. Unsuitabl	le Materials	Present: 🛛	Yes 🗌 No If		Disturbed Soil/Fil	II Material	D v	Weathered/Fr	actured Ro	ick 🗌 Bedroo	ck
Ground	water Obse	rved: Ves	No.			ves:	Depth to	Weeping in Ho	ole	Depth Star	nding Water in Hole
	mater obce										and the store in the store
	Soil Horizon	Soil Texture	Soil Matrix: Color-			il Log	Coarse	Fragments y Volume	Soll	Soli	
				Depth	Soi	il Log	Coarse	Fragments			Other
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	-	Soi Redoximorphic Featu	il Log ures	Coarse % by	Fragments y Volume Cobbles &	Soil	Soli Consistence	
Depth (in) 0 - 12	Soil Horizon /Layer	Soil Texture	Soil Matrix: Color-	-	Soi Redoximorphic Featu Color Cnc : Dpl: Cnc : Dpl:	Il Log ures Percent	Coarse % by	Fragments y Volume Cobbles &	Soil	Soli Consistence	
	Soil Horizon /Layer Fi LL	Soil Texture (USDA)	Soil Matrix: Color- Moist (Munsell)	-	Soi Redoximorphic Featur Color Cnc: - Dpl: - Cnc: - Dpl: - Cnc: - Cnc: - Dpl: -	Il Log ures Percent	Coarse % by	Fragments y Volume Cobbles &	Soil Structure	Soil Consistence (Molst)	
Depth (in) 0-12 12-28 28-44	Soil Horizon /Layer Fi LL A _b	Soil Texture (USDA)	Soil Matrix: Color- Moist (Munsell)	- - Чо	Soil           Redoximorphic Feature           Color           Cnc :           Dpl:           Dpl:           Dpl:           Dpl:           Dpl:	Il Log ures Percent	Coarse % by Gravel	Pragments y Volume Cobbles & Stones	Soil Structure	Soli Consistence (Moist) — Fri able	
Depth (in) 0-12 12-28	Soil Horizon /Layer Fill A _b B _w CI	Soil Texture (USDA) 	Soll Matrix: Color- Molst (Munsell) IDYR ² 1, IDYR ⁵ 16	- - Чо	Soil           Redoximorphic Feature           Color           Cnc :         -           Dpl:         -           Cnc :         -           Cnc :         -           Dpl:         -           Cnc :         -	Il Log ures Percent	Coarse % by Gravel — 5%	Volume Cobbles & Stones 	Soil Structure	Soll Consistence (Moist) — Friable Friable	

~ 59 min. / inch

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### D. Determination of High Groundwater Elevation

1.	Method Used (Choose one):			Obs. Hole # SEPTIC-		
	<ul> <li>Depth to soil redoximorphic features</li> <li>Depth to observed standing water in observation hole</li> </ul>			<u>40</u> inches	inches	
				inches	inches	
	Depth to adjusted season (USGS methodology)	nal high groundv	vater (Sh)	inches	inches	
	Index Well Number		Reading Date			
	$S_h = S_c - [S_r \times (OW_c - O)]$	W _{max} )/OW _r ]				
	Obs. Hole/Well#	S	S,	OW	OW _{max} OW _r	Sn

## E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

Yes 🛛 No

- b. If yes, at what depth was it observed (exclude O, A, and E Horizons)?
- c. If no, at what depth was impervious material observed? Upper boundary:

12	Lower boundary:	>60	
inches		inches	
	Lower boundary:		
Inches		inches	
	<u></u>	Lower boundary:	inches inches inches



# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

# F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107

Catilmine	101012027-
Signature of Soil Evaluator	Date
Anna Wimmer - SE14615	5/1/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green - SG14374	Scituate Board of Health
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## A. Facility Information

9/281 Old Dake	in Bucket Road	$\frac{41-1-3-0}{Map/Lot #}$
Deituate	MA	02066
	State	Zip Code

1.	(Check one) 🛛 New Construction 🗌 Upgrade
2.	Soil Survey Web Soil Survey 42713- Newfields FSL Newfields Fine Sandy Loan Soil Series
	Landform Landform Soil Limitations
	<u>Coarse-Loany edian deposits over sandy and gravely supraglacial methout</u>
3.	Surficial Geological Report 2018 - Stone, Stone, Diagracome Thin till Year Published/Source Map Unit
	Non-sorted, non-stratified matrix of Sand, some silt and little clay containing Description of Geologic Map Unit: Scattered Pebble, cobble and boulder deposits
4.	Flood Rate Insurance Map Within a regulatory floodway?  Yes X No
5.	Within a velocity zone?  Ves X No
6.	Within a Mapped Wetland Area? Yes X No If yes, MassGIS Wetland Data Layer:
7.	Current Water Resource Conditions (USGS): 10/0/2022 Range: Above Normal & Normal Below Normal
8.	Other references reviewed: USGS 470130 420310070433501 - MADAW 79R DUXBURY

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep C	Observation	Hole Numbe	Hole #	1010 Date	2022 10: Tim	45 AM	- <u>P</u> We	artiy Ci	ouchy	Latitude	Longitude
. Land U	ise Luco	clland	ral field, vacant lot, etc	c.)	Vegetation	, think	5 Son	Stones (e.g.,	cobbles, stor	nes, boulders, etc	(%) Slope (%)
	of Location:				oout 50						-
2. Soil Pa	arent Material	: Thin /	LOOSETILL		Landform	ine		Back Position on L	SIO De	/ plain	TS, Plain)
B. Distance	ces from:				t						ds > <u>50</u> feet
		F	Property Line >	o_ fee	t Drin	king Wate	r Well >1	00 feet		Othe	er <u>NIA</u> feet
. Unsuit	table Materia	als Present:	🗆 Yes 🖾 No	If Yes:	Disturbed Soil/F	ill Material		Weathered/	Fractured F	Rock Bec	lrock
5. Groun	dwater Obse	erved: Yes	No No		If yes:	Depth t	o Weeping	In Hole		Depth to Sta	nding Water in Hole
					Soil					_	
Depth (in)	Soil Horizon		Soil Matrix: Color-		Redoximorphic Featur	es		Fragments Volume	Soil	Soil Consistence	Other
	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	Other
0-24	Ap	FS	104R312	-	Cnc: Dpl:	-	-	-	GR	F	-
24-36	Bw	SL	10412514	-	Cnc: Dpl:	-	5%	1	m	F	—
36-67	CI	15	2.57 4/4	40	Cnc: 7.5 42 514 Dpl: 2.5 4712	30%	-	100/0	m	F	-
67-124	C2	SL	2.57513	-	Cnc: - Dpl: -	-	-	10%	M	F	-
					Cnc : Dpl:						
					Cnc:						
					Dpl:						

Additional Notes:

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### D. Determination of High Groundwater Elevation

1.	Method Used (Choose one): Depth to soil redoximorphic features		Obs. Hole # <u>(H3</u> -2 <u>40</u> inches	Obs. Hole # inches	
	Depth to observed standing water in observa	ation hole	inches	inches	
	<ul> <li>Depth to adjusted seasonal high groundwate (USGS methodology)</li> </ul>	er (Sh)	inches	inches	
	Index Well Number Sh = Sc - [Sr X (OWc - OWmax)/OWr]	Reading Date			
	Obs. Hole/Well# Sc	Sr	OWc OV	W _{max} OWr	Sh

#### E. Depth of Pervious Material

#### 1. Depth of Naturally Occurring Pervious Material

a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

#### Yes INO

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	inches	Lower boundary:	748 inches
c.	If no, at what depth was impervious material observed?	Upper boundary:	Inches	Lower boundary:	inches



City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

- Children	1010/2027
Signature of Soil Evaluator	Date
Anna Wimmer - SE14615	5/1/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green - SG14374	Scituate Board of Health
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Commonwealth of Massachusetts City/Town of	
City/10will Of	

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## A. Facility Information

	Salt Meadow Development/ Miraglia Jon S + Barbara TRS
	Street Address 41-1-3-0/41-1-3-B
	Scituate MA DZOLOGO
	City State Zip Code
B.	Site Information
1.	(Check one) 🛛 New Construction 🗌 Upgrade
2.	Soil Survey <u>Web Soil Survey</u> <u>42713- Newfields FSL</u> <u>Newfields Fine Sandy Loan</u> Source Source
	Landform Landform Soil Limitations
	<u>Coarse-Loany eolian deposits over sandy and gravely supraglacial methout</u>
3.	Surficial Geological Report 2015 - Stone, Stone, Diagracomo Thin till Year Published/Source Thank till
	Non-Sorted non-Stratified matrix of Sand, some silt and little day containing Description of Geologic Map Unit: Scattered Pebble, cobble and boulder deposits
4.	Flood Rate Insurance Map Within a regulatory floodway?  Yes X No
5.	Within a velocity zone?  Yes X No
6.	Within a Mapped Wetland Area? Yes X No If yes, MassGIS Wetland Data Layer:
7.	Current Water Resource Conditions (USGS): <u>10 0 2022</u> Range: Above Normal Normal Below Normal Month/Day/ Year
8.	Other references reviewed: (Zone II, IWPA, Zone A, EEA Data Portal, etc.)

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

# C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

	Observation	Hole Numbe	er: CH-3 3 Hole #	1010120 Date	772 - 1 TI	1:00 AV	n f	Veather y	loudy	Latitude	Longitude							
1. Land I	Use 1000	indiand, agricultu	ral field, vacant lot, et		octors Tony	Sunib:	5 _Surfac	e Stones (e.g.	adus actoles sta	nes, boulders, etc	(%) Siope (%)							
	n of Location		vooded are								_							
. Soil P	arent Materia	1: 100 ST	STIL		Landform	CAINE		Buc.		pe/Pian	S. Pani							
. Distan	nces from:	Oper	Water Body ≥															
		F	Property Line >	0_feet	Dri	nking Wate	er Well <u>&gt;</u>	IDO feet		Othe	r <u>NHA</u> bes							
. Unsui	table Materia	als Present	🗆 Yes 🛛 No	If Yes:	Disturbed Soil/	Fill Material		Weathered	Fractured	Rock 🗌 Bed	rock							
-		avert 🗖 Ver			Viene													
. Groun	idwater Obse	rved: 1 Yes	<u>KI</u> NO				to Weeping	in Hole		Depth to Star	nding Water in Hole							
-		1			501	I Log		-	-									
Contraction (	Soil Horizon	Soil Texture								Soll Matrix: Color	Redoximorphic Features		res		Fragments	1	Soi	
							% by	Volume	Soil		-							
Depth (in)	Alayer	(USDA	Moist (Munsell)	Depth	Color	Percent	% by Grzvel	Cobbles & Stones	Sol Structure	Consistence (Noist)	Other							
0-6	Ap				e: —	Percent	-	Cobbles &		Consistence	Other							
		(USDA	Moist (Munsell)	- 6 6	e: —	-	Gravel	Cobbles &	Structure	Consistence (Moist)	05xer							
0-6	Ap Bw	(USDA SL	Moist (Munsell)	- 616 616 28 616	x: - x: - x: 7.5 YE ⁻ /u x: 2.5 YU/4 x: -	-	Gravel	Cobbles &	GR H	Consistence (Noist) F	0ther							
0-6 6-34 3465	Ap Bw CI	rusda Sil Sil	Moist (Munsell)	- 28 518 518	x: - x: - x: 7.5 YE //w x: 7.5 YU/4 x: - x: -	-	Gravel	Cobbles &	GR M	Consistence (Moist) F F	000er							
0-6 6-34	Ap Bw CI	rusda Sil Sil Gibil	Moist (Munsell) 1078 ³ 12 10784/4 2.575/4	- 28 518 518 	$\frac{x_{1}}{x_{1}} = \frac{1}{2} \frac{x_{1}}{x_{1}} $	-	Gravel	Cobbles &	GR M M M	Consistence (Moist) F F F	000er							
6-34 3465	Ap Bw CI	rusda Sil Sil Gibil	Moist (Munsell) 1078 ³ 12 10784/4 2.575/4	- 28	$\frac{x_{1}}{x_{1}} = \frac{1}{2} \frac{x_{1}}{x_{1}} $	-	Gravel	Cobbles &	GR M M M	Consistence (Moist) F F F	065er							

Additional Notes:

ISIOm11 revised 1-23-20.000

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## D. Determination of High Groundwater Elevation

Method Used (Choose one):			Obs. Hole # CH -3 -3	Obs. Hole #	
Depth to soil redoximorp	hic features		28 inches	inches	
Depth to observed stand	ing water in obse	ervation hole	inches	inches	
Depth to adjusted seaso (USGS methodology)	nal high groundv	vater (Sh)	inches	inches	
Index Well Number		Reading Date			
$S_h = S_c - [S_r \times (OW_c - O)]$	W _{max} )/OW _r ]				
Obs. Hole/Well#	Sc	Sr	OWc	OW _{max} OW _r	Sh
	Depth to soil redoximorp         Depth to observed stand         Depth to adjusted seaso (USGS methodology)         Index Well Number         Sh = Sc - [Sr x (OWc - O))	Depth to observed standing water in observed st	☑ Depth to soil redoximorphic features         ☑ Depth to observed standing water in observation hole         ☑ Depth to adjusted seasonal high groundwater (S _h ) (USGS methodology)         Index Well Number       Reading Date         S _h = S _c − [S _r x (OW _c − OW _{max} )/OW _r ]	Image: Shear of Sc - [Sr x (OWc - OWmax)/OWr]       2% inches         2% inches       2% inches         2% inches	Image: Depth to soil redoximorphic features $2\%$ inches      inches         Image: Depth to observed standing water in observation hole      inches      inches         Image: Depth to adjusted seasonal high groundwater (Sn)      inches      inches         Image: Methodology)

## E. Depth of Pervious Material

City/Town of

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

Yes 🛛 No

- b. If yes, at what depth was it observed (exclude O, A and E Horizons)?
- Upper boundary: Upper boundary:

inches

inches

Lower boundary:

c. If no, at what depth was impervious material observed?

Lower boundary:	
	inches

² City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107

Billon and Wemmen	1010/2027
Signature of Soil Evaluator	Date
Anna Wimmer - SE14615	5/1/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green - 5514374	Scituate Board of Health
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

City/Town of

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## A. Facility Information

.

Salt Meadow Develop	pment/Miraglia Jon S	S+Barbara TRS	
279/281 Old Oake Street Address		<u>41-1-3-0 (41-1-3-B</u> Map/Lot#	
Scituate	State	Zip Code	

#### **B. Site Information**

1. (Ch	eck one)	$\boxtimes$	New Construction		Upgrade
--------	----------	-------------	------------------	--	---------

2.	Soil Survey <u>Web Soil Survey</u> <u>427B-Newfields FSL</u> <u>Newfields Fine Sandy Loan</u> Source Source
	Landform Landform Soll Limitations
	Coarse-Loamy colian deposits over sandy and gravely supraglacial mettout
3.	Surficial Geological Report 2018 - Stone, Stone, Diagracomo Thin till Year Published/Source Map Unit
	Non-Sorted non-Stratified matrix of Sand some silt and little clay containing Description of Geologic Map Unit: Scattered Pebble, cobble and boulder deposits
4.	Flood Rate Insurance Map Within a regulatory floodway?  Yes X No
5.	Within a velocity zone? 🗌 Yes 🖾 No
6.	Within a Mapped Wetland Area?  Yes X No  If yes, MassGIS Wetland Data Layer: Wetland Type
7.	Current Water Resource Conditions (USGS): 10/0/2022 Range: Above Normal Normal Below Normal Month/Day/ Year
8.	Other references reviewed: (Zone II, IWPA, Zone A, EEA Data Portal, etc.)

10 MR2/2

10YR516

10YR4B

104Rº/2

Dpl:

Cnc :

Dpl:

Dpl:

Cnc :

Cnc : Dpl: Cnc : Dpl:

Dpl:

30

-

Cnc: 7.57124/4

-

-

7.54712

-

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area) Deep Observation Hole Number: Unit-22 10/0/2022 11:30 Am Party Cloudy Weather Weather Longitude Latitude 1. Land Use Ucocland (e.g., woodland, agricultural field, vacant lot, etc.) Uccestion Uccestion, Surface Stones (e.g., cobbles, stones, boulders, etc.) 0 -3% Approx. 100-150' to the west of the house / 100' off poad Description of Location: 2. Soil Parent Material: LOOSE TIL Landform Position on Landscape (SU, SH, BS, FS, TS, Plain) Drainage Way 250 feet Wetlands >50 feet Open Water Body 256 feet 3. Distances from: Drinking Water Well 2100 feet N/A feet Other Property Line >10 feet 4. Unsuitable Materials Present: Yes X No If Yes: Disturbed Soil/Fill Material □ Weathered/Fractured Rock □ Bedrock 5. Groundwater Observed: X Yes T No NA Depth to Standing Water in Hole If yes: 1210 Depth to Weeping in Hole Soil Loa **Coarse Fragments Redoximorphic Features** Soll % by Volume Soil Matrix: Color-Soil Soil Texture Soil Horizon Consistence Other Depth (in) /Laver (USDA Moist (Munsell) Structure Cobbles & (Moist) Gravel Depth Color Percent Stones Cnc : -

5

10

D

5

5

30%

t5form11 revised 1-23-20.doc

Additional Notes:

Ap

Bw

CI

C2

0-12

12-30

30-70

70-128

15

15

15

SL

F

F

F

F

M

M

M

M

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### D. Determination of High Groundwater Elevation

۱.	Method Used (Choose one): Depth to soil redoximorphic features	Obs. Hole # Mout +22	Obs. Hole # Inches
	Depth to observed standing water in observation	hole Inches	inches
	<ul> <li>Depth to adjusted seasonal high groundwater (S (USGS methodology)</li> </ul>	h) Inches	Inches
	Index Well Number $R$ Sh = Sc - [Sr x (OWc - OWmax)/OWr]	eading Date	
	Obs. Hole/Well# Sc	Sr OWc OWm	nax OWr Sh

#### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

Yes 🗌 No

- b. If yes, at what depth was it observed (exclude O, A, and E Horizons)? Upper boundary: O Lower boundary: >45
- c. If no, at what depth was impervious material observed?

0	Lower boundary:	248
Inches		inches
	Lower boundary:	
Inches		Inches
		Inches Lower boundary:



# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

# F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107

Catilmine	101012027-
Signature of Soil Evaluator	Date
Anna Wimmer - SE14615	5/1/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green - SG14374	Scituate Board of Health
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## A. Facility Information

Street Address	Ken Bucket Road	<u> </u>	-3-B
Scituate	State		
0.1		2.9 0000	
B. Site Information			
1. (Check one) 🛛 New Constru	uction 🔲 Upgrade		
2. Soil Survey Web Soil Source	Survey 427 13- i Soil Map Unit	Soll Series	fields Fine Sandy Loan
Moraines, till pl	ains, Itills Shallow Soil Limitations	to Groundwater, Shallow	to Restrictive Layer
Soil Parent material	colian deposits over	c. sandy and gravely suf	raglacial mettout
3. Surficial Geological Report	2018 - Stone, Stan Year Published/Source	e, Diagracome Thin Map Unit	till
	- stratified matrix "	of Sana, some silt and	Little clay containing
Non-Sorted, non Description of Geologic Map Unit:		able and builder densu	
	Within a regulatory floodway?		
4. Flood Rate Insurance Map	Within a regulatory floodway?		
Flood Rate Insurance Map     Within a velocity zone?	Within a regulatory floodway?		
4. Flood Rate Insurance Map	Yes Yes No	Yes 🛛 No	Wetland Type

۰.

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

	Deep Observation Hole Number: UNIT-21 10/0/2022 11:50 AM Partly Cloudy Latitude	Longitude
1.	Land Use Woodland (e.g., woodland, agricultural field, vacant kit, etc.) Vegetation Surface Stones (e.g., cobbles, stones, boulders, etc.)	3-5'(a Slope (%)
De	escription of Location: Approx 150' west of house, 150' off Road	
2.	Soil Parent Material: Louse Till Moraines Back Scope / plaine Position on Landscape (SU, SH, BS, FS, TS, IS, IS)	Plain)
3.	Distances from: Open Water Body >56 teet Drainage Way >50 teet Wetlands	250 leet
	Property Line >10_feet Drinking Water Well >100_feet Other	NA het
4.	Unsuitable Materials Present: Ves No If Yes: Disturbed Soil/Fill Material Weathered/Fractured Rock Bedroo	k
5.	Groundwater Observed: Yes No If yes: 108 Depth to Weeping in Hole 112 Depth to Standin	g Water in Hole

Soil Log

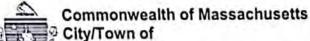
Depth (in)	Soil Hortzon	Soil Texture	Soil Matrix: Color-		Redoximorphic Featur	% by volume		Soll	Soil Consistence	Other	
2.01	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)	
076	Ap	SL	7.5 YR2.53	-	Cnc : Dpl:	-	-	-	M	F	
10-48	Bw	L5	104R516	11	Cnc : Dpl:	-	10	-	m	F	_
48-120	C	GLS	2.546/4		Cnc: 7.5 YR4/5 Dpl: 2.5 Y412	50%	-	5	m	F	_
					Cnc : Dpl:						
					Cnc : Dpl:						
					Cnc : Dpl:						

t5form11 revised 1-23-20.doc

٠

# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

## D. Determination of High Groundwater Elevation


1.	Method Used (Choose one): Depth to soil redoximorphic features	Obs. Hole, # <u>U∾rT</u> -:21 <u>_48</u> inches	Obs. Hole # inches	
	Depth to observed standing water in observation hole	inches	inches	
	<ul> <li>Depth to adjusted seasonal high groundwater (Sh) (USGS methodology)</li> </ul>	inches	inches	
	Index Well Number Reading Date			
	$S_n = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$			
	Obs. Hole/Well# Sc Sr	OW₀ OW	/max OWr	Sh

#### E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
  - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

Yes 🛛 No

b.	If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary:	0	Lower boundary:	748
	If no at what depth was impositive material sharped?	Unnerbeundenn	inches	t anna baile daoin	inches
υ.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches



# Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

#### F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107

Catilmine	1010/2027-
Signature of Soil Evaluator	Date
Anna Wimmer - SE14615	5/1/2025
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joshua Green - SG14374	Scituate Board of Health
Name of Approving Authority Witness	Approving Authority

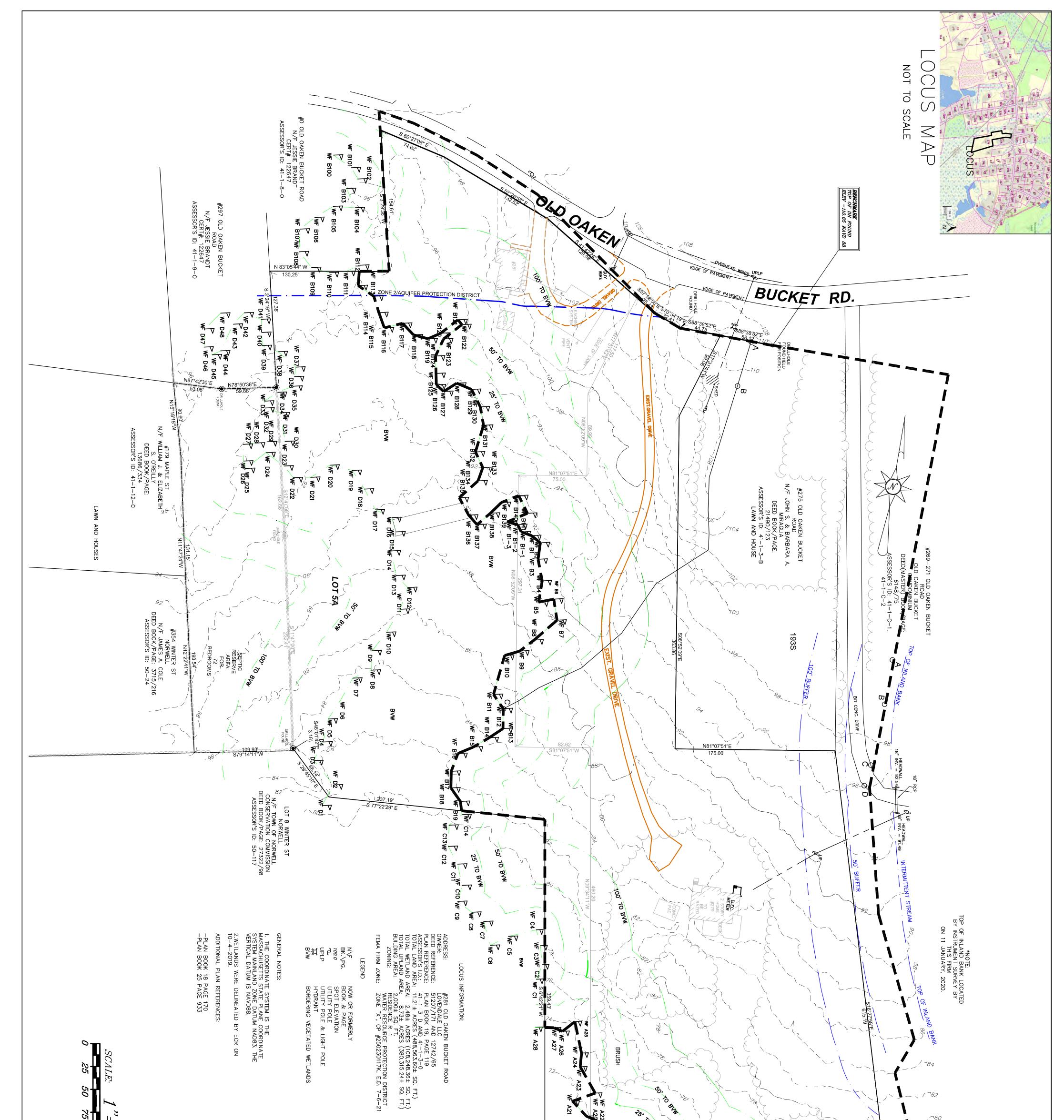
Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

#### Form 12 - PERCOLATION TEST Location, Address, or Lot # 279-281 Old Oaken Bucket Rd. Scituate, MA Commonwealth of Massachusetts Scituate, Massachusetts

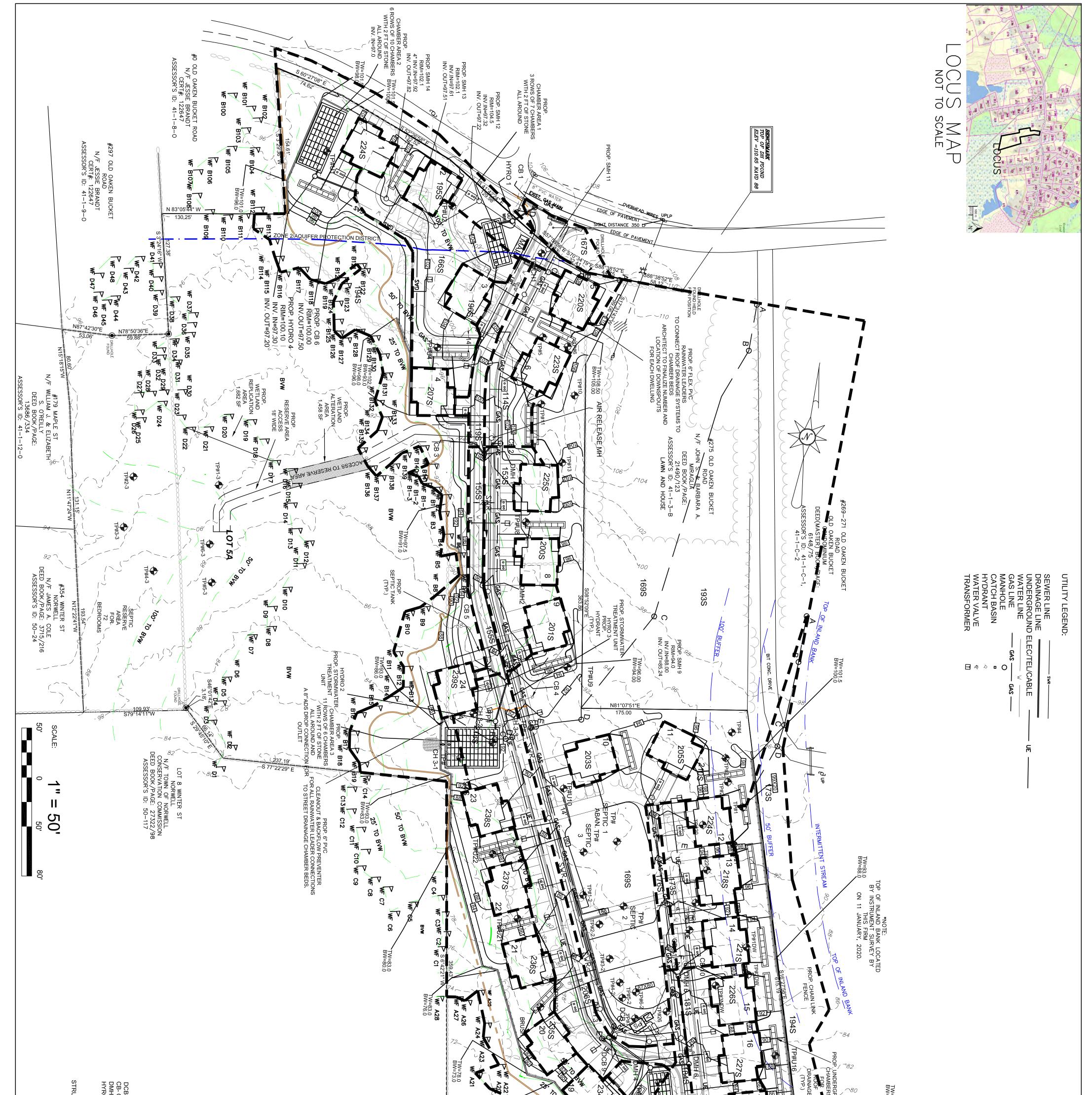
*Percolat	ion Test	
Date: 10-6-2022	Time: 12:24PM	

Observation Hole #	T.P. septic 3	
Depth of Perc.	60+18"	
Start Pre-Soak	12:24	
End Pre-Soak	12:39	
Time at 12"	12:39	
Time at 9"	1:37	
Time at 6"	3:25	
Time (9" - 6")	108	
Rate (Minutes/Inch)	36 min/in	

X Site Passed Site Failed


#### **Stormwater Management Regulations Standard #10:**

#### **Illicit Discharge Compliance Statement**


An illicit discharge is any discharge to a municipal separate storm sewer system (MS4) that is not comprised entirely of stormwater, discharges from fire-fighting activities, and certain non-designated non-stormwater discharges.

To the best of my knowledge, no detectable illicit discharge exists on site. The Comprehensive Permit plans included with this report detail the storm sewers that convey stormwater on the site and demonstrate that these systems do not include the entry on and illicit discharge. An Operations and Maintenance Plan is also included along with the Long Term Pollution Prevention Plan that outlines measures to prevent future illicit discharges. As the Site Owner, I will be responsible for implementing the Long Term Pollution Prevention Plan.

Name:	
Company:	Lovendale, LLC
Title:	
Signature:	
_	
Date:	



$5 \frac{50}{125}$	IDIDIDIDIDI         IDIDIDIDIDI		Detend Book/PAGE: 10413/329 ASSESSOR'S ID: 47-1-4-C Detend Book/PAGE: 10413/329 ASSESSOR'S ID: 47-1-4-C Detend Book/PAGE: 10413/329 ASSESSOR'S ID: 47-1-4-C	Too' TO BW Too' TO BW Too To BW Too To BW Too To BW Too To BW Too To BW Too BW
SCALE: $1" = 50'$ 50 0 50 100 DATE: DECEMBER 12, 2022 COMP./DESIGN: A. ESPOSITO CHECK: M. D. CASEY FIELD: LJL/PS APPROVED: M. D. CASEY DWG.No. 1908 PRED JOB No. 1908 PRED 1 OF 2	PARCEL 41-1-3-0 PREPARED BY: PREPARED IN CONSULTANTS, INC. REGISTERED LAND SURVEYORS & CIVIL ENGINEERS 167 R SUMMER STREET KINGSTON, MA 02364 781-582-2185 mark@ssscinc.net PREPARED FOR: LOVENDALE, LLC 107 EAST. ST. DUXBURY, MA 02332	EVELOPI RAINAGE PLAN	THE COTTAGES AT OLD OAKEN BUCKET AT #279-281 OLD OAKEN BUCKET ROAD SCITUATE, MA	REVISIONS: No. DESCRIPTION DATE PROJECT TITLE:



CB- DOUBLE CATCH BASIN B-CATCH BASIN MH-DRAIN MANHOLE YRO- TSS TREATMENT UNIT REFER TO PROFILE SHEETS FOR RUCTURE ELEVATIONS NOT SHOWN HERE	1212222	TWF A19 WF A19 WF POPE'S POND CRANBERRY CO. DEED BOOK/PAGE: 10413/329 ASSESSOR'S ID: 47-1-4-C DRUHOLE FOUND DRUHOLE	Image: series of the series		
SCALE:       1" = 50'         50'       0       50'         50'       0       50'         DO'       0       50'         DATE:       DECEMBER 12, 2022         COMP./DESIGN:       A. ESPOSITO         CHECK:       M. D. CASEY         DRAWN:       A. ESPOSITO         FIELD:       LJL/PS         APPROVED:       M. D. CASEY         DWG.No.       1908         JOB No.       1908	PREPARED EX PREPARED EX CONSULTANTS, Inc. REGISTERED LAND SURVEYORS & CIVIL ENGINEERS 167 R SUMMER STREET KINGSTON, MA 02364 781–582–2185 mark@ssscinc.net PREPARED FOR: THE LOVENDALE COMPANY, LLC 114 ONION HILL ROAD DUXBURY, MA 02332	<b>POST-DEVELOPMEN</b> DRAINAGE PLAN PARCEL 41-1-3-D PARCEL 41-1-3-0	THE COTTAGES AT OLD OAKEN BUCI AT #279-281 OLD OAK BUCKET ROAD SCITUATE, MA	PROJECT TITLE:	REVISIONS: No. DESCRIPTION
	c.net		AGES OAKEN OAD MA		DATE